Skip to main content
Log in

Effect of cooling on the structure and electrochemical properties of 0.3Li2MnO3 · 0.7LiNi0.5Mn0.5O2 cathode material

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

The cooling rate after annealing treatment was proved to be important for the structure and electrochemical performances of the layered oxide 0.3Li2MnO3 · 0.7LiNi0.5Mn0.5O2 material, which has been synthesized using a sol–gel method. Powder X-ray diffraction (XRD), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), nondestructive nano-computed tomography (nano-CT), and Brunauer-Emmett-Teller (BET) surface area measurement were used to characterize the structure and micromorphology of the material. It was demonstrated that the material quenched by liquid nitrogen (AN-material) showed less defects in structure and larger specific surface area than the material cooled naturally (AF-material). Electrochemical measurement showed that the AN-material exhibited better electrochemical performance as cathode candidate for lithium-ion batteries. The initial discharge capacity and coulombic efficiency reached 277.4 mAh g−1 and 84.1 % for AN-material, while 257.1 mAh g−1 and 78.4 % for AF-material. In addition, the AN-material also exhibited lower charge transfer resistance than AF-material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Kim JS, Johnson CS, Vaughey JT, Thackeray MM (2004) Chem Mater 16:1996

    Article  CAS  Google Scholar 

  2. Singh G, Tomas R, Kumar A, Katiyar RS (2012) J Electrochem Soc 159:A410

    Article  CAS  Google Scholar 

  3. Thackeray MM, Wolverton C, Isaacs ED (2012) Energy Environ Sci 5:7854

    Article  CAS  Google Scholar 

  4. Kim D, Sandi G, Croy FR, Gallagher KG, Kang SH, Lee E, Slater MD, Johnson CS, Thackeray MM (2013) J Electrochem Soc 160:A31

    Article  CAS  Google Scholar 

  5. Breger J, Dupre N, Chupas PJ, Lee PL, Proffen T, Parise JB, Grey CP (2005) J Am Chem Soc 127:7529

    Article  CAS  Google Scholar 

  6. Yu HJ, Ishikawa R, So YG, Shibata N, Kudo T, Zhou H, Ikuhara Y (2013) Angew Chem Int Ed 52:5969

    Article  CAS  Google Scholar 

  7. Thackeray MM, Kang SH, Johnson CS, Vaughey JT, Hackney SA (2006) Electrochem Commun 8:1531

    Article  CAS  Google Scholar 

  8. Thackeray MM, Kang SH, Johnson CS, Vaughey JT, Benedek R, Hackney SA (2007) J Mater Chem 17:3112

    Article  CAS  Google Scholar 

  9. Hong J, Lim HD, Lee M, Kim SW, Kim H, Oh ST, Chung GC, Kang K (2012) Chem Mater 24:2692

    Article  CAS  Google Scholar 

  10. Myung ST, Komaba S, Kurihara K, Hosoys K (2006) N. kumagai, Y. K. Sun, I. Nakai, M. Yonemura and T. Kamiyama. Chem Mater 18:1658

    Article  CAS  Google Scholar 

  11. Kang K, Meng YS, Breger J, Brey CP, Ceder G (2006) Science 311:977

    Article  CAS  Google Scholar 

  12. Kang K, Ceder G (2006) Phys Rev B 74:094105

    Article  Google Scholar 

  13. Gu M, Belharouak I, Genc A, Wang ZG, Wang DP, Amine K (2012) Fei. Gao, and G. W. Zhou. Nano Lett 12:5186

    Article  CAS  Google Scholar 

  14. Zhang LQ, Takada K, Ohta N, Fukuda K, Sasaki T (2005) J Power Sources 146:598

    Article  CAS  Google Scholar 

  15. Kang SH, Amine K (2003) J Power Sources 124:533

    Article  CAS  Google Scholar 

  16. Liu YJ, Liu SB (2013) Ionics 19:477

    Article  CAS  Google Scholar 

  17. Lu ZH, Beaulieu LY, Donaberger RA, Thomas CL, Dahn JR (2002) J Electrochem Soc 149:A778

    Article  CAS  Google Scholar 

  18. Ohzuku T, Komori H, Nagayama M, Sawai K, Hirai T (1991) Chem Express 6:161

    CAS  Google Scholar 

  19. Dahn JR, von Sacken U, Michal CA (1990) Solid State Ionics 44:87

    Article  CAS  Google Scholar 

  20. Zhang LQ, Takada K, Ohta N, Fukuda K, Sasaki T (2005) J Power Sources 146:598

    Article  CAS  Google Scholar 

  21. Zhao TL, Chen S, Li L, Zhang XF, Chen RJ, Belharouak I (2013) J Power Sources 228:206

    Article  CAS  Google Scholar 

  22. Li Z, Du F, Bie XF, Zhang D, Cai YM, Cui XR, Wang CZ (2010) J Phys Chem C 114:22751

    Article  CAS  Google Scholar 

  23. West WC, Soler J, Ratnakumar BV (2012) J Power Sources 204:200

    Article  CAS  Google Scholar 

  24. Xu B, Fell CR, Chi MF, Meng YS (2011) Energy Environ Sci 4:2223

    Article  CAS  Google Scholar 

  25. Zheng JM, Wu XB, Yang Y (2011) Electrochim Acta 56:3071

    Article  CAS  Google Scholar 

  26. Cho SW, Kim GO, Ryu KS (2012) Solid State Ionic 206:84

    Article  CAS  Google Scholar 

  27. Nam KW, Bak SM, Hu EY, Yu XQ, Zhou YN (2013) Adv Func Mater 23:1047

    Article  CAS  Google Scholar 

  28. Delmas C, Saadoune I, Rougier A (1993) J Power Sources 43:595

    Article  Google Scholar 

  29. Ito A, Li DC, Sato Y, Arao M, Watanabe M, Hatano M, Horie H, Ohsawa Y (2010) J Power Sources 195:567

    Article  CAS  Google Scholar 

  30. Yabuuchi N, Yoshii K, Myung ST, Nakai I, Komaba S (2011) J Am Chem Soc 133:4404

    Article  CAS  Google Scholar 

  31. Gu M, Belharouak I, Zheng JM, Wu HM, Xiao J, Genc A, Amine K, Thevuthasan S, Baer DT, Zhang JC (2013) ACS Nano 7:760

    Article  CAS  Google Scholar 

  32. Zhao JY, Yao JX, Zhang YZ, Guli M, Xiao L (2014) J Power Sources 255:16

    Article  CAS  Google Scholar 

  33. Shi SJ, Tu JP, Tang YY, Yu YX, Zhang YQ, Wang XL, Gu CD (2013) J Power Sources 228:14

    Article  CAS  Google Scholar 

  34. Shojan J, Rao CV, Torres L, Singh G, Katiyar RS (2013) Mater Lett 104:57

    Article  CAS  Google Scholar 

  35. Choi SH, Shlyakhtin OA, Kim J, Yoon YS (2005) J Power Sources 140:355

    Article  CAS  Google Scholar 

  36. Kang SH, Kim J, Stoll ME, Abraham D, Sun YK, Amine K (2002) J Power Sources 112:41

    Article  CAS  Google Scholar 

  37. Liu YJ, Li XH, Guo HJ, Wang ZX, Hu QY, Peng WJ, Peng WJ (2009) J Power Sources 189:721

    Article  CAS  Google Scholar 

  38. Li L, Zhang XX, Chen RJ, Zhao TL, Lu J, Wu F, Amine K (2014) J Power Sources 249:28

    Article  CAS  Google Scholar 

  39. Zhang HZ, Qiao QQ, Li GR, Ye SH, Gao XP (2012) J mater Chem 22:13104

    Article  CAS  Google Scholar 

  40. Xiao PH, Deng ZQ, Manthiuram A, Henkelman G (2012) J Phys Chem C 116:23201

    Article  CAS  Google Scholar 

  41. Sun X, Li J, Shi C, Wang Z, Liu E, He C, Du X (2012) J Power Sources 220:264

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Li Wang or Xiangming He.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Zhang, Y., Wang, L. et al. Effect of cooling on the structure and electrochemical properties of 0.3Li2MnO3 · 0.7LiNi0.5Mn0.5O2 cathode material. Ionics 21, 1819–1825 (2015). https://doi.org/10.1007/s11581-015-1375-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-015-1375-5

Keywords

Navigation