Skip to main content
Log in

Composite-porous polymer membrane with reduced crystalline for lithium–ion battery via non-solvent evaporate method

  • Short Communication
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

Nano-TiO2 is selected as inorganic filler to fabricate the reduced crystalline composite polymer membrane. The porous polymer matrix employed in this study was poly(vinylidene fluoride-co-hexafluoropropylene) (PVDF-HFP) membrane synthesized via non-solvent evaporate method and the electrolyte solution uptake was carried out in the glove box to avoid the moisture contamination. The effect of nano-TiO2 on the crystalline of porous polymer membrane was studied. It was found that blending with nano-TiO2 helps to reduce the crystalline of polymer membrane. Electrochemical impedance spectroscopy showed that the room temperature conductivity of PVDF-HFP/TiO2 composite-porous polymer electrolyte (CPPE) increased up to 1.5 × 10−3S/cm, and scanning electron microscope (SEM) micrographs showed that the micro-pores and nano-TiO2 particles were observed in the polymer membrane. Furthermore, the composite-porous polymer electrolyte was stable up to 4.5 V (vs. Li/Li+) and the LiFePO4/CPPE/Li coin cell showed excellent rate capability, the discharge capacity obtained at 0.1C, 0.5C, 1C, and 3C were 164, 157, 143, and 122 mAh/g, respectively. And the cell had about 6 % capacity loss when it discharged at 1C for 50 cycles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. Tarascon JM, Armand M (2001) Nature 6861:359–367

    Article  Google Scholar 

  2. Scrosati B, Garche J (2010) J Power Sources 9:2419–2430

    Article  Google Scholar 

  3. Meyer WH (1998) Adv Mater 6:439–448

    Article  Google Scholar 

  4. Song JY, Wang YY, Wan CC (1999) J Power Sources 2:183–197

    Article  Google Scholar 

  5. Murata K, Izuchi S, Yoshihisa Y (2000) Electrochim Acta 8:1501–1508

    Article  Google Scholar 

  6. Zuo X, Liu XM, Cai F et al (2012) J Mater Chem 41:22265–22271

    Article  Google Scholar 

  7. Kim KM, Park NG, Ryu KS et al (2006) Electrochim Acta 26:5636–5644

    Article  Google Scholar 

  8. Du Pasquier A, Warren PC, Culver D et al (2000) Solid State Ionics 1:249–257

    Article  Google Scholar 

  9. Manuel Stephan A, Teeters D (2003) Electrochim Acta 14:2143–2148

    Article  Google Scholar 

  10. Wang X, Gong C, He D et al (2014) J Membr Sci 454:298–304

    Article  CAS  Google Scholar 

  11. Wu CG, Lu MI, Chuang HJ (2005) Polymer 16:5929–5938

    Article  Google Scholar 

  12. Peramunage D, Abraham KM (1998) J Electrochem Soc 8:2615–2622

    Article  Google Scholar 

  13. Kataoka H, Saito Y, Sakai T et al (2000) J Phys Chem B 48:11460–11464

    Article  Google Scholar 

  14. Saito Y, Kataoka H, Quartarone E et al (2002) J Phys Chem B 29:7200–7204

    Article  Google Scholar 

  15. Zhai W, Zhu H, Wang L et al (2014) Electrochim Acta 133:623–630

    Article  CAS  Google Scholar 

  16. Sgambetterra M, Panero S, Hassoun J et al (2013) Ionics 9:1203–1206

    Article  Google Scholar 

  17. Kumar GG, Kim P, Elizabeth RN (2007) J Membr Sci 1:126–131

    Article  Google Scholar 

  18. Aravindan V, Vickraman P (2008) J Appl Polym Sci 2:1314–1322

    Article  Google Scholar 

  19. Lin CW, Hung CL, Venkateswarlu M et al (2005) J Power Sources 1:397–401

    Article  Google Scholar 

  20. Croce F, Persi L, Scrosati B et al (2001) Electrochim Acta 16:2457–2461

    Article  Google Scholar 

  21. Lauter U, Meyer WH, Wegner G (1997) Macromolecules 7:2092–2101

    Article  Google Scholar 

  22. Wieczorek W, Such K, Chung SH et al (1994) J Phys Chem 36:9047–9055

    Article  Google Scholar 

  23. Kim SK, Kim WD, Kim KM et al (2004) Appl Phys Lett 18:4112–4114

    Article  Google Scholar 

  24. Luo B, Wang X, Wang Y et al (2014) J Mater Chem 2:510–519

    Article  CAS  Google Scholar 

  25. Xie G, Zhu HJ, Liu XM et al (2013) J Alloys Compd 574:155–160

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China under contract no. 21171116 and the International Science & Technology Cooperation Program of China under contract no. 2012DFG11660 and the Shanghai Rising-Star Program (B-type) no. 14QB1402900.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Chunming Zhang or Dannong He.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yan, P., Huang, Z., Lin, Y. et al. Composite-porous polymer membrane with reduced crystalline for lithium–ion battery via non-solvent evaporate method. Ionics 21, 593–599 (2015). https://doi.org/10.1007/s11581-014-1337-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-014-1337-3

Keywords

Navigation