Skip to main content
Log in

Effect of Ti-doping on the electrochemical performance of lithium vanadium(III) phosphate

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

Carbon-coated and titanium-substituted lithium vanadium phosphate composites have been successfully prepared through a sol-gel method followed by solid-state reaction under argon. Li3V1.9Ti0.1(PO4)3-C (LVT10PC) and Li3V1.85Ti0.15(PO4)3-C (LVT15PC) were investigated using X-ray powder diffraction, thermal analysis, transmission electron microscopy, cyclic voltammetry, and galvanostatic tests. Different models for the solid solution mechanism in this system are discussed. Electrochemical tests, at a charge-discharge rate of 0.2 C, in the range 2.8–4.4 V show that LVT10PC delivers the highest discharge capacity of 121 mA h g−1 and declines to 115.7 mA h g−1 up to the 60th cycle, corresponding to a 4.4 % loss. At low levels, titanium substitution is found to increase initial discharge capacity compared to the carbon-coated unsubstituted system (LVPC). Further substitution is found to have detrimental effects on initial discharge capacity and cycling behaviour.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Mizushima K, Jones PC, Wiseman PJ, Goodenough JB (1980) LixCoO2 (0 < x ≤1): a new cathode material for batteries of high energy density. Mater Res Bull 15(6):783–789. doi:10.1016/0025-5408(80)90012-4

    Article  CAS  Google Scholar 

  2. Padhi AK, Nanjundaswamy KS, Goodenough JB (1997) Phospho‐olivines as positive‐electrode materials for rechargeable lithium batteries. J Electrochem Soc 144(4):1188–1194. doi:10.1149/1.1837571

    Article  CAS  Google Scholar 

  3. Barker J, Saidi Y (1999) Lithium-containing phosphates, method of preparation, and use thereof. US Patent 5:871,866

    Google Scholar 

  4. Rui X, Yan Q, Skyllas-Kazacos M, Lim TM (2014) Li3V2(PO4)3 cathode materials for lithium-ion batteries: a review. J Power Sources 258:19–38. doi:10.1016/j.jpowsour.2014.01.126

    Article  CAS  Google Scholar 

  5. Bakenov Z, Taniguchi I (2010) Electrochemical performance of nanocomposite LiMnPO4/C cathode materials for lithium batteries. Electrochem Commun 12(1):75–78. doi:10.1016/j.elecom.2009.10.039

    Article  CAS  Google Scholar 

  6. Amine K, Yasuda H, Yamachi M (2000) Olivine LiCoPO4 as 4.8 V electrode material for lithium batteries. Electrochem Solid-State Lett 3(4):178–179. doi:10.1149/1.1390994

    Article  CAS  Google Scholar 

  7. Wolfenstine J, Allen J (2005) Ni3+/Ni2+ redox potential in LiNiPO4. J Power Sources 142(1–2):389–390. doi:10.1016/j.jpowsour.2004.11.024

    Article  CAS  Google Scholar 

  8. Barker J, Gover RKB, Burns P, Bryan A, Saidi MY, Swoyer JL (2005) Structural and electrochemical properties of lithium vanadium fluorophosphate, LiVPO4F. J Power Sources 146(1–2):516–520. doi:10.1016/j.jpowsour.2005.03.126

    Article  CAS  Google Scholar 

  9. Morgan D, Van der Ven A, Ceder G (2004) Li conductivity in LixMPO 4 (M = Mn, Fe, Co, Ni) olivine materials. Electrochem Solid-State Lett 7(2):A30–A32. doi:10.1149/1.1633511

    Article  CAS  Google Scholar 

  10. Rissouli K, Benkhouja K, Ramos-Barrado JR, Julien C (2003) Electrical conductivity in lithium orthophosphates. Mater Sci Eng B 98(3):185–189. doi:10.1016/S0921-5107(02)00574-3

    Article  Google Scholar 

  11. Wang L, Tang Z, Ma L, Zhang X (2011) High-rate cathode based on Li3V2(PO4)3/C composite material prepared via a glycine-assisted sol–gel method. Electrochem Commun 13(11):1233–1235. doi:10.1016/j.elecom.2011.08.036

    Article  CAS  Google Scholar 

  12. Li Y, Hong L, Sun J, Wu F, Chen S (2012) Electrochemical performance of Li3V2(PO4)3/C prepared with a novel carbon source, EDTA. Electrochim Acta 85:110–115. doi:10.1016/j.electacta.2012.08.038

    Article  CAS  Google Scholar 

  13. Lan Y, Wang X, Zhang J, Zhang J, Wu Z, Zhang Z (2011) Preparation and characterization of carbon-coated LiFePO4 cathode materials for lithium-ion batteries with resorcinol–formaldehyde polymer as carbon precursor. Powder Technol 212(2):327–331. doi:10.1016/j.powtec.2011.06.005

    Article  CAS  Google Scholar 

  14. Saïdi MY, Barker J, Huang H, Swoyer JL, Adamson G (2003) Performance characteristics of lithium vanadium phosphate as a cathode material for lithium-ion batteries. J Power Sources 119–121:266–272. doi:10.1016/S0378-7753(03)00245-3

    Article  Google Scholar 

  15. Tang A, Wang X, Liu Z (2008) Electrochemical behavior of Li3V2(PO4)3/C composite cathode material for lithium-ion batteries. Mater Lett 62(10–11):1646–1648. doi:10.1016/j.matlet.2007.09.064

    Article  CAS  Google Scholar 

  16. Li Y-Z, Zhou Z, Ren M-M, Gao X-P, Yan J (2007) Improved electrochemical Li insertion performances of Li3V2(PO4)3/carbon composite materials prepared by a sol–gel route. Mater Lett 61(23–24):4562–4564. doi:10.1016/j.matlet.2007.02.057

    Article  CAS  Google Scholar 

  17. Chen Y, Zhao Y, An X, Liu J, Dong Y, Chen L (2009) Preparation and electrochemical performance studies on Cr-doped Li3V2(PO4)3 as cathode materials for lithium-ion batteries. Electrochim Acta 54(24):5844–5850. doi:10.1016/j.electacta.2009.05.041

    Article  CAS  Google Scholar 

  18. Yuan W, Yan J, Tang Z, Sha O, Wang J, Mao W, Ma L (2012) Mo-doped Li3V2(PO4)3/C cathode material with high rate capability and long term cyclic stability. Electrochim Acta 72:138–142. doi:10.1016/j.electacta.2012.04.030

    Article  CAS  Google Scholar 

  19. Zhong S, Liu L, Jiang J, Li Y, Wang J, Liu J, Li Y (2009) Preparation and electrochemical properties of Y-doped Li3V2(PO4)3 cathode materials for lithium batteries. J Rare Earths 27(1):134–137. doi:10.1016/S1002-0721(08)60207-0

    Article  Google Scholar 

  20. Son JN, Kim SH, Kim MC, Kim GJ, Aravindan V, Lee YG, Lee YS (2013) Superior charge-transfer kinetics of NASICON-type Li3V2(PO4)3 cathodes by multivalent Al3+ and Cl− substitutions. Electrochim Acta 97:210–215. doi:10.1016/j.electacta.2013.02.118

    Article  CAS  Google Scholar 

  21. Mateyshina YG, Uvarov NF (2011) Electrochemical behavior of Li3−xM'xV2−yM''y(PO4)3 (M'=K, M'' = Sc, Mg+ Ti)/C composite cathode material for lithium-ion batteries. J Power Sources 196(3):1494–1497. doi:10.1016/j.jpowsour.2010.08.078

    Article  CAS  Google Scholar 

  22. Liu S-Q, Li S-C, Huang K-L, Chen Z-H (2007) Effect of doping Ti4+ on the structure and performances of Li3V2(PO4)3. Acta Phys -Chim Sin 23(4):537–542

    Article  CAS  Google Scholar 

  23. Larson AC, Von Dreele RB (1987) General structure analysis system (GSAS). Los Alamos National Laboratory

  24. Yin SC, Grondey H, Strobel P, Anne M, Nazar LF (2003) Electrochemical property: structure relationships in monoclinic Li3-yV2(PO4)3. J Am Chem Soc 125(34):10402–10411. doi:10.1021/ja034565h

    Article  CAS  Google Scholar 

  25. Loehman RE, Rao CNR, Honig JM (1969) Crystallography and defect chemistry of solid solutions of vanadium and titanium oxides. J Phys Chem 73(6):1781–1784. doi:10.1021/j100726a025

    Article  CAS  Google Scholar 

  26. Huang C, Chen D, Huang Y, Guo Y (2013) Sol–gel synthesis of Li3V2(PO4)3 cathode materials with high electrical conductivity. Electrochim Acta 100:1–9. doi:10.1016/j.electacta.2013.03.073

    Article  CAS  Google Scholar 

  27. Shannon R (1976) Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr A 32(5):751–767. doi:10.1107/S0567739476001551

    Article  Google Scholar 

  28. Stankov SM, Momchilov A, Abrahams I, Popov I, Stankulov T, Trifonova A (2014) Synthesis and characterisation of Si and Mg substituted lithium vanadium(III) phosphate. Bulgarian chemical communications

Download references

Acknowledgments

This study was supported by Project BG051PO001/3.3-05-0001 “Science and Business” and “Human Resources Development” Operational Programme co-financed by the European Social Fund of the EU and the Bulgarian national budget. We wish to thank Dr R.M. Wilson at Queen Mary University of London for his help in X-ray data collection.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to S. M. Stankov or I. Abrahams.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stankov, S.M., Abrahams, I., Momchilov, A. et al. Effect of Ti-doping on the electrochemical performance of lithium vanadium(III) phosphate. Ionics 21, 1501–1508 (2015). https://doi.org/10.1007/s11581-014-1325-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-014-1325-7

Keywords

Navigation