Skip to main content
Log in

First-principles study of La2CoMnO6: a promising cathode material for intermediate-temperature solid oxide fuel cells due to intrinsic Co-Mn cation disorder

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

La2CoMnO6 has attracted intensive research interest because of its prospect for novel technological applications and rich fundamental physics. And, due to the similar radii size as well as small covalent difference (as large as 2) between Co and Mn, cation disorder should be intrinsic within this perovskite. We performed comprehensive first-principles calculations on both La2CoMnO6 (LCMO) and LCMO with CoMn-MnCo antisite defects (AD:LCMO), focusing on the formation of bulk oxygen vacancies, which plays a key role in oxygen ion diffusion process in solid oxide fuel cell (SOFC) electrodes. First, it is found that the covalent states are 2 and +4 for Co and Mn at their regular sites while they are both prone to be +3 in the antisites. The formation energies for oxygen vacancies are predicted to follow the trend Co2+-O-Mn4+ > Co2+-O-Co3+ > Mn3+-O-Mn4+, and the underlying microscopic mechanism is attributed to the more electron delocalization between mixed-covalent transition metals (Co2+-O-Co3+ and Mn3+-O-Mn4+), which is beneficial to diminish the electronic repulsion and help to stabilize the vacancy. Therefore, we could conclude that oxygen ionic conductivity should be enhanced in the compounds with higher degree of cation disorder. Our results indicate that AD:LCMO should be a promising intermediate-temperature solid oxide fuel cell cathode material.

Based on first-principles calculations, we studied ordered LCMO as well as LCMO with CoMn-MnCo antisite defects (AD:LCMO). First, it was found that the covalent states are +2 and +4 for Co and Mn at regular sites while they are both prone to be +3 in the antisites. The formation energies for oxygen vacancies are predicted to follow the trend Co2+-O-Mn4+ > Co2+-O-Co3+ > Mn3+-O-Mn4+, and the underlying microscopic mechanism for this trend is attributed to the more delocalization of the electrons within AD:LCMO due to the mixed-covalent transition-metal pairs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Boudghene Stambouli A, Traversa E (2002) Renew Sust Energy Rev 6:433

    Article  Google Scholar 

  2. Sammes M, Smirnova A, Vasylyev O (eds) (2005) Fuel cell technologies: state and perspectives. Springer, Dordrecht

    Google Scholar 

  3. Steele BCH, Heinzel A (2001) Nature 414:345

    Article  CAS  Google Scholar 

  4. Yang L, Wang S, Blinn K, Liu M, Cheng Z, Liu M (2009) Science 326:126

    Article  CAS  Google Scholar 

  5. M Godickermeier (1996) Mixed ionic electronic conductors for solid oxide fuel cells. PhD Thesis, Swiss Federal Institute of Technology, Zurich, Switzerland

  6. Jacobson AJ (2010) Chem Mater 22:660

    Article  CAS  Google Scholar 

  7. Aguadero A, Alonso JA, Escudero MJ, Daza L (2008) Solid State Ionics 179:393

    Article  CAS  Google Scholar 

  8. Kobayashi KI, Kimura T, Sawada H, Terakura K, Tokura Y (1998) Nature 395:677

    Article  CAS  Google Scholar 

  9. Liu GY, Rao GH, Feng XM, Yang HF, Ouyang ZW, Liu WF, Liang JK (2003) J Phys Condens Matter 15:2053

    Article  CAS  Google Scholar 

  10. Liu Q, Dong X, Xiao G, Zhao F, Chen F (2010) Adv Mater 22:5478

    Article  CAS  Google Scholar 

  11. Muñoz-García AB, Pavone M, Carter EA (2011) Chem Mater 23:4525

    Article  Google Scholar 

  12. Kim B, Choi HC, Kim BH, Min BI (2010) Phys Rev B 81:224402

    Article  Google Scholar 

  13. Sanchez D, Alonso JA, Garcı′a-Hernandez M, Martı′nez-Lope MJ, Martı′nez JL, Mellergard A (2002) Phys Rev B 65:104426

    Article  Google Scholar 

  14. Navarro J, Nogues J, Munoz JS, Fontcuberta J (2003) Phys Rev B 67:174416

    Article  Google Scholar 

  15. Frontera C, Fontcuberta J (2004) Phys Rev B 69:014406

    Article  Google Scholar 

  16. Kresse G, Furthmueller J (2003) VASP the guide. University of Vienna, Vienna

    Google Scholar 

  17. Dudarev SL, Botton GA, Savrasov SY, Humphreys CJ, Sutton AP (1998) Phys Rev B 57:1505

    Article  CAS  Google Scholar 

  18. Anisimov VI, Zaanen J, Andersen OK (1991) Phys Rev B 44:943

    Article  CAS  Google Scholar 

  19. Perdew JP, Zunger A (1981) Phys Rev B 23:5048

    Article  CAS  Google Scholar 

  20. Perdew JP, Burke K, Ernzerhof M (1996) Phys Rev Lett 77:3865

    Article  CAS  Google Scholar 

  21. Blochl P (1994) Phys Rev B 50:17953

    Article  Google Scholar 

  22. Monkhorst HJ, Pack JD (1976) Phys Rev B 13:5188

    Article  Google Scholar 

  23. Bader RFW (1990) Atoms in molecules—a quantum theory. Oxford University Press, New York

    Google Scholar 

  24. Rogado NS, Li J, Sleight AW, Subramanian MA (2005) Adv Mater 17:2225

    Article  CAS  Google Scholar 

  25. Bull CL, Gleeson D, Knight KS (2003) J Phys Condens Matter 15:4927

    Article  CAS  Google Scholar 

  26. Dass RI, Goodenough JB (2003) Phys Rev B 67:014401

    Article  Google Scholar 

  27. Dass RI, Yan J-Q, Goodenough JB (2003) Phys Rev B 68:064415

    Article  Google Scholar 

  28. Baidya S, Saha-Dasgupta T (2011) Phys Rev B 84:035131

    Article  Google Scholar 

  29. Lv S, Wang Z, Saito M, Ikuhara Y (2013) J Appl Phys 113:203704

    Article  Google Scholar 

  30. Kyomen T, Yamazaki R, Itoh M (2004) Chem Mater 16:179

    Article  CAS  Google Scholar 

  31. Lv S, Liu X, Li H, Han L, Wang Z, Meng J (2012) J Comput Chem 33:1433

    CAS  Google Scholar 

  32. Ogale AS, Ogale SB, Ramesh R, Venkatesan T (1999) Appl Phys Lett 75:537

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China under grant Nos. 51002148, 20921002, and 21471002 and Natural Scientific Foundation of Jilin Province 20130101016JC and the Jilin Provincial Science Research Foundation of China (No. 20101549).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiaojuan Liu or DeFeng Zhou.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yuan, N., Liu, X., Meng, F. et al. First-principles study of La2CoMnO6: a promising cathode material for intermediate-temperature solid oxide fuel cells due to intrinsic Co-Mn cation disorder. Ionics 21, 1675–1681 (2015). https://doi.org/10.1007/s11581-014-1320-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-014-1320-z

Keywords

Navigation