Skip to main content
Log in

Photoelectrochemical properties of FTO/p-NiO electrode induced by UV light irradiation

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

Photoelectrochemical properties of p-nickel oxide (NiO) thin film deposited on fluorine-doped tin oxide (FTO) electrode, by combination of co-precipitation in aqueous media along with the dip-coating process, were investigated by cyclic voltammetry and chronoamperometry techniques in sodium sulfate (Na2SO4) electrolyte solution. The electrochemical characterization measurements have shown that the FTO/p-NiO electrode presents sensitivity to UV light, as observed by the increased photo-induced current, exposed to a more negative potential. The photoelectrochemical parameters obtained were photocurrent response time (∆t 1), photocurrent decay time (∆t 0), and photocurrent density stability (j ph, j light on − j light off). Besides, this electrode shows excellent performance for methylene blue degradation under UV light irradiation condition, with estimated k obs value of 170 × 10−4 min−1, which is nine times higher than the dark condition and about three times higher than NiO powder catalyst. Results presented here allow concluding that the p-NiO thin film stands as an important electrode material with technological potential to be used directly in environmental preservation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Reddy AM, Reddy AS, Lee K-S, Reddy PS (2011) Ceram Int 37:2837–2843

    Article  CAS  Google Scholar 

  2. Awais M, Dowling DD, Rahman M, Vos JG, Decker F, Dini D (2013) J Appl Electrochem 43:191–197

    Article  CAS  Google Scholar 

  3. Biju V, Khadar MA (2001) Mater Res Bull 36:21–33

    Article  CAS  Google Scholar 

  4. Jang W-L, Lu Y-M, Hwang W-S, Chen W-C (2010) J Eur Ceram Soc 30:503–508

    Article  CAS  Google Scholar 

  5. Turky AM (2003) Appl Catal A 247:83–93

    Article  CAS  Google Scholar 

  6. Swagten HJM, Strijkers GJ, Bloemen PJH, Willekens MMH, Jonge WJM (1996) Phys Rev B 53:9108–9114

    Article  CAS  Google Scholar 

  7. Silva MR, Scalvi LVA, Dall’Antonia LH, Santos DI (2013) J Mater Sci Mater Electron 24:1823–1831

    Article  Google Scholar 

  8. Hotovy I, Huran J, Spiess L, Capkovic R, Hascik S (2000) Vacuum 58:300–307

    Article  CAS  Google Scholar 

  9. Yu PC, Nazri G, Lambert CM (1987) Sol Energy Mater 16:1–17

    Article  CAS  Google Scholar 

  10. Lu H-W, Li D, Sun K, Li Y-S, Fu Z-W (2009) Solid State Sci 11:982–987

    Article  CAS  Google Scholar 

  11. Shaigan N, Ivey DG, Chen W (2008) J Electrochem Soc 155:D227

    Article  Google Scholar 

  12. Vidotti M, Torresi RM, Torresi SIC (2010) Quim Nova 33:2176–2186

    Article  CAS  Google Scholar 

  13. Svegl F, Vuk AS, Hajzeri M, Perse LS, Orel B (2012) Energy Mater Sol Cells 99:14–25

    Article  CAS  Google Scholar 

  14. Irwin MD, Buchholz DB, Hains AW, Chang RPH, Marks TJ (2008) Proc Nat Acad Sci 105:2783–2787

    Article  CAS  Google Scholar 

  15. Gao Z-H, Zhang H, Cao G-P, Han M-F, Yang Y-S (2013) Electrochim Acta 87:375–380

    Article  CAS  Google Scholar 

  16. Li L, Gibson EA, Qin P, Boschloo G, Gorlov M, Hagfeldt A, Sun L (2010) Adv Mater 22:1759–1762

    Article  CAS  Google Scholar 

  17. Nattestad A, Mozer AJ, Fischer MKR, Cheng YB, Mishra A, Bauerle P, Bach U (2010) Nat Mater 9:31–35

    Article  CAS  Google Scholar 

  18. Han W, Zhu W, Zhang P, Zhang Y, Li L (2004) Catal Today 90:319–324

    Article  CAS  Google Scholar 

  19. Mendez-Martinez AJ, Davila-Jimenez MM, Ornelas-Davila O, Elizalde-Gonzalez MP, Arroyo-Abad U, Sires I, Brillas E (2012) Electrochim Acta 59:140–149

    Article  CAS  Google Scholar 

  20. Hayat K, Gondal MA, Khaled MM, Ahmed S (2011) J Mol Catal A Chem 336:64–71

    Article  CAS  Google Scholar 

  21. Shu H, Xie J, Xu H, Li H, Gu Z, Sun G, Xu Y (2010) J Alloys Compd 496:633–637

    Article  CAS  Google Scholar 

  22. Vera F, Schrebler R, Muñoz E, Suarez C, Cury P, Gómez H, Córdova R, Marotti RE, Dalchiele EA (2005) Thin Solid Films 490:182–188

    Article  CAS  Google Scholar 

  23. Qamar M, Gondal MA, Yamani ZH (2011) J Mol Catal A Chem 341:83–88

    Article  CAS  Google Scholar 

  24. Zhou B, Qu J, Zhao X, Liu H (2011) J Environ Sci 23:151–159

    Article  CAS  Google Scholar 

  25. Silva MR, Dall’Antonia LH, Scalvi LVA, Santos DI, Ruggeiro LO, Urbano A (2012) J Solid State Electrochem 16:2016–2025

    Google Scholar 

  26. Berglund SP, Flaherty DW, Hahn NT, Bard AJ, Mullins CB (2011) J Phys Chem C 115:3794–3802

    Article  CAS  Google Scholar 

  27. Lu X, Xie S, Yang H, Tong Y, Ji H (2014) Chem Soc Rev. doi:10.1039/C3CS60392J

    Google Scholar 

  28. Xie S, Zhai T, Li W, Yu M, Liang C, Gan J, Lu X, Tong Y (2013) Green Chem 15:2434–2440

    Article  CAS  Google Scholar 

  29. Sato H, Minami T, Takata S, Yamada T (1993) Thin Solid Films 236:27–31

    Article  CAS  Google Scholar 

  30. Sharma PK, Fantini MCA, Gorenstein A (1998) Solid State Ionics 457:113–115

    Google Scholar 

  31. Mahmoud SA, Ali SA, Abdel-Rahman M, Abdel-Hady K (2000) Phys B 293:125–131

    Article  CAS  Google Scholar 

  32. Kang JK, Rhee SW (2001) Thin Solid Films 391:57–61

    Article  CAS  Google Scholar 

  33. Reguig BA, Khelil A, Cattin L, Morsli M, Bernède JC (2007) Appl Surf Sci 253:4330–4334

    Article  CAS  Google Scholar 

  34. Zhang Y, Huang X, Lu Z, Liu Z, Ge X, Xu J, Xin X, Sha X, Su W (2006) J Power Sources 160:1217–1220

    Article  CAS  Google Scholar 

  35. Deng XY, Chen Z (2004) Mater Lett 58:276–280

    Article  CAS  Google Scholar 

  36. Wang S-F, Shi L-Y, Feng X, Ma S-R (2007) Mater Lett 61:1549–1551

    Article  CAS  Google Scholar 

  37. Li QY, Wang RN, Nie ZR, Wang ZH, Wei Q (2008) J Colloid Interface Sci 320:254–258

    Article  CAS  Google Scholar 

  38. Cullity BD, Stock SR (2001) Elements of X-Ray diffraction. Prentice Hall, New Jersey

    Google Scholar 

  39. Chen HL, Lu YM, Hwang WS (2005) Surf Coat Technol 198:138–142

    Article  CAS  Google Scholar 

  40. Jang WL, Lu YM, Hwang WS, Hsiung TL, Wang HP (2008) Surf Coat Technol 202:5444–5447

    Article  CAS  Google Scholar 

  41. Purushothaman KK, Muralidharan G (2009) Sol Energy Mater Sol Cells 93:1195–1201

    Article  CAS  Google Scholar 

  42. Hakim A, Hossain J, Khan KA (2009) Renew Energy 34:2625–2629

    Article  CAS  Google Scholar 

  43. Gupta RK, Ghosh K, Kahol PK (2009) Phys E 41:617–620

    Article  CAS  Google Scholar 

  44. Chen X, Zhang Z, Shi C, Li X (2008) Mater Lett 62:346–351

    Article  CAS  Google Scholar 

  45. Pejova B, Kocareva T, Najdoski M, Grozdanov I (2000) Appl Surf Sci 165:271–278

    Article  CAS  Google Scholar 

  46. Das NS, Saha B, Thapa R, Das GC, Chattopadhyay KK (2010) Phys E 42:1377–1382

    Article  CAS  Google Scholar 

  47. Zhu Z, Wei N, Liu H, He Z (2011) Adv Powder Technol 22:422–426

    Article  CAS  Google Scholar 

  48. Prathap MUA, Satpati B, Srivastava R (2014) Electrochim Acta 130:368–380

    Article  CAS  Google Scholar 

  49. Silva MR, Ângelo ACD, Dall’Antonia LH (2010) Quim Nova 33:2027–2031

    Article  Google Scholar 

  50. Vidotti M, Silva MR, Salvador RP, de Córdoba TSI, Dall’Antonia LH (2008) Electrochim Acta 53:4030–4034

    Article  CAS  Google Scholar 

  51. He J, Lindstrom H, Hagfeldt A, Lindquist S-E (1999) J Phys Chem B 103:8940–8943

    Article  CAS  Google Scholar 

  52. Silva MR, Lucilha AC, Afonso R, Dall’Antonia LH, Scalvi LVA (2014) Ionics 20:105–113

    Article  Google Scholar 

  53. Hepel M, Luo J (2001) Electrochim Acta 47:729–740

    Article  CAS  Google Scholar 

  54. Spyrkowicz L, Radaelli M, Daniele S (2005) Catal Today 100:425–429

    Article  Google Scholar 

  55. Panizza M, Barbucci A, Ricotti R, Cerisola G (2007) Sep Purif Technol 54:382–387

    Article  CAS  Google Scholar 

  56. Martínez-Huitle CA, Brillas E (2009) Appl Catal B 87:105–145

    Article  Google Scholar 

Download references

Acknowledgments

The authors wish to thank Prof. Margarida J. Saeki for the SEM images. They also acknowledge CNPq, FAPESP, and FUNDAÇÃO ARAUCÁRIA (15585/2010), NEMAN (Pronex, 17378/2009), for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcelo Rodrigues da Silva.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

da Silva, M.R., Neto, V.S.L., Lucilha, A.C. et al. Photoelectrochemical properties of FTO/p-NiO electrode induced by UV light irradiation. Ionics 21, 1407–1415 (2015). https://doi.org/10.1007/s11581-014-1300-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-014-1300-3

Keywords

Navigation