Skip to main content
Log in

Investigation of polyaniline films doped with Co2+ as the electrode material for electrochemical supercapacitors

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

H+ and Co2+ ions co-doped polyaniline were synthesized by cyclic voltammetry onto the stainless steel mesh with various concentrations of cobalt chloride (CoCl2 · 6H2O) in electrolyte. The structure and morphology of polyaniline (PANI) and PANI/Co2+ films were characterized by Fourier transform infrared (FT-IR), X-ray diffraction (XRD), scanning electron microscopy (SEM), and X-ray photoelectron spectroscopy (XPS) techniques. The electrochemical properties of PANI and PANI/Co2+ films were investigated by cyclic voltammetry, galvanostatic charge–discharge test, and electrochemical impedance spectroscopy (EIS) in 0.5 mol L−1 H2SO4 electrolyte in a three-electrode system. The PANI/0.3 M Co2+ film shows a larger specific capacitance of 736 F g−1 at a current density of 3 mA/cm2 and lower resistance compared with the pure PANI film. The results indicated that the PANI/Co2+ films are promising material for supercapacitors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig 9

Similar content being viewed by others

References

  1. Zheng Z, Huang L, Zhou Y, Hu XW, Ni XM (2009) Large-scale synthesis of mesoporous CoO-doped NiO hexagonal nanoplatelets with improved electrochemical performance. Solid State Sci 11:1439–1443

    Article  CAS  Google Scholar 

  2. Zhu JH, Chen MJ, Wei HG, Yerra N, Haldolaarachchige N, Luo ZP, Young DP, Ho TC, Wei SY, Guo ZH (2014) Magnetocapacitance in magnetic microtubular carbon nanocomposites under external magnetic field. Nano Energy 6:180–192

    Article  CAS  Google Scholar 

  3. You Z, Shen K, Wu ZC, Wang XF, Kong XH (2012) Electrodeposition of Zn-doped α-nickel hydroxide with flower-like nanostructure for supercapacitors. Appl Surf Sci 258:8117–8123

    Article  CAS  Google Scholar 

  4. Zhu JH, Chen MJ, He QL, Shao L, Wei SY, Guo ZH (2013) An overview of the engineered graphene nanostructures and nanocomposites. RSC Adv 3:22790–22824

    Article  CAS  Google Scholar 

  5. Chen X, Wang HW, Yi H, Wang XF (2014) Anthraquinone on porous carbon nanotubes with improved supercapacitor performance. J Phys Chem C 118:8262–8270

    Article  CAS  Google Scholar 

  6. Ryu KS, Kim KM, Park NG, Park YJ, Chang SH (2002) Symmetric redox supercapacitor with conducting polyaniline electrodes. J Power Sources 103:305–309

    Article  CAS  Google Scholar 

  7. Xing SX, Zhao C, Jing SY, Wang ZH (2006) Morphology and conductivity of polyaniline nanofibers prepared by ‘seeding’ polymerization. Polym 47:2305–2313

    Article  CAS  Google Scholar 

  8. Toupin M, Brousse T, Bélanger D (2004) Charge storage mechanism of MnO2 electrode used in aqueous electrochemical capacitor. Chem Mater 16:3184–3190

    Article  CAS  Google Scholar 

  9. Wei JT, Xing GZ, Gao L, Suo H, He XP, Zhao C, Li SA, Xing SX (2013) Nickel foam based polypyrrole–Ag composite film: a new route toward stable electrodes for supercapacitors. New J Chem 37:337–341

    Article  CAS  Google Scholar 

  10. Shirakawa H, Louis EJ, MacDiarmid AG, Chiang CK, Heeger AJ (1977) Synthesis of electrically conducting organic polymers: halogen derivatives of polyacetylene, (CH)x. J Chem Soc, Chem Commun 16:578–580

    Article  Google Scholar 

  11. Burroughes JH, Bradley DDC, Brown AR, Marks RN, Mackay K, Friend RH, Burns PL, Holmes AB (1990) Light-emitting diodes based on conjugated polymers. Nat 347:539–541

    Article  CAS  Google Scholar 

  12. Bélanger D, Ren X, Davey J, Uribe F, Gottesfeld S (2000) Characterization and long-term performance of polyaniline-based electrochemical capacitors. J Electrochem Soc 147:2923–2929

    Article  Google Scholar 

  13. Gu HB, Wei HG, Guo J, Haldolaarachige N, Young DP, Wei SY, Guo ZH (2013) Hexavalent chromium synthesized polyaniline nanostructures: magnetoresistance and electrochemical energy storage behaviors. Polym 54:5974–5985

    Article  CAS  Google Scholar 

  14. Gu HB, Guo J, Yan XR, Wei HG, Zhang X, Liu GR, Huang YD, Wei SY, Guo ZH (2014) Electrical transport and magnetoresistance in advanced polyaniline nanostructures and nanocomposites. Polym 55:4405–4419

    Article  CAS  Google Scholar 

  15. Javadi HH, Cromack KR, MacDiarmid AG, Epstein AJ (1989) Microwave transport in the emeraldine form of polyaniline. Phys Rev B 39:3579–3584

    Article  CAS  Google Scholar 

  16. Wang YG, Joo J, Hsu CH, Epstein AJ (1995) Charge transport of camphor sulfonic acid-doped polyaniline and poly(o-toluidine) fibers: role of processing. Synth Met 68:207–211

    Article  CAS  Google Scholar 

  17. SaravananS MCJ, Anantharaman MR, Venkatachalam S, Avasthi DK, Singh F (2005) Photoluminescence studies on RF plasma-polymerized thin films. Synth Met 155:311–315

    Article  Google Scholar 

  18. Qiu B, Xu CX, Sun DZ, Wei HG, Zhang X, Guo J, Wang Q, Rutman D, Guo ZH, Wei SY (2014) Polyaniline coating on carbon fiber fabrics for hexavalent chromium removal. RSC Adv 4:29855–29865

    Article  CAS  Google Scholar 

  19. Lu XH, Ng HY, Xu JW, He CB (2002) Electrical conductivity of polyaniline-dodecylbenzene sulphonic acid complex: thermal degradation and its mechanism. Synth Met 128:167–178

    Article  CAS  Google Scholar 

  20. Wang CL, Sun L, Zhou Y, Wan P, Zhang X, Qiu JH (2013) P/N co-doped microporous carbons from H3PO4-doped polyaniline by in situ activation for supercapacitors. Carbon 59:537–546

    Article  CAS  Google Scholar 

  21. Wei HG, Gu HB, Guo J, Wei SY, Liu GR, Guo ZH (2013) Silica doped nanopolyaniline with endured electrochemical energy storage and the magnetic field effects. J Phys Chem C 117:13000–13010

    Article  CAS  Google Scholar 

  22. Qiu B, Xu CX, Sun DZ, Yi H, Guo J, Zhang X, Qu HL, Guerrero M, Wang XF, Noel N, Luo ZP, Guo ZH, Wei SY (2014) Polyaniline coated ethyl cellulose with improved hexavalent chromium removal. ACS Sustain Chem Eng 2(8):2070–2080

    Article  CAS  Google Scholar 

  23. Li J, Cui M, Lai YQ, Zhang ZA, Lu H, Fang Jand Liu YX (2010) Investigation of polyaniline co-doped with Zn2+ and H+ as the electrode material for electrochemical supercapacitors. Synth Met 160:1228–1233

    Article  CAS  Google Scholar 

  24. Dhibar S, Sahoo S, Das CK, Singh R (2013) Investigations on copper chloride doped polyaniline composites as efficient electrode materials for supercapacitor applications. J Mater Sci Mater Electron 24:576–585

    Article  CAS  Google Scholar 

  25. Xu H, Zhang JL, Chen Y, Lu HL, Zhuang JX (2014) Electrochemical polymerization of polyanilinne doped with Cu2+ as the electrode material for electrochemical supercapacitors. RSC Adv 4:5547–5552

    Article  CAS  Google Scholar 

  26. Xu H, Li JL, Peng ZJ, Zhuang JX, Zhang JL (2013) Investigation of polyaniline films doped with Ni2+ as the electrode material for electrochemical supercapacitors. Electrochim Acta 90:393–399

    Article  CAS  Google Scholar 

  27. Xu H, Zhang JL, Lu HL, Zhuang JX (2014) Electrochemical polymerization of polyanilinne doped with Zn2+ as the electrode material for electrochemical supercapacitors. J Solid State Electrochem 18:813–819

    Article  CAS  Google Scholar 

  28. Sun T, Bi H, Zhu KR (2007) An infrared and raman spectroscopic study of polyanilines co-doped with metal ions and H+. Spectrochim Acta Part A 66:1364–1368

    Article  Google Scholar 

  29. Kim YH, Foster C, Chiang J, Heeger AJ (1989) Localized charged excitations in polyaniline: infrared photoexcitation and protonation studies. Synth Met 29:285–290

    Article  Google Scholar 

  30. Moon YB, Cao Y, Smith P, Heeger AJ (1989) X-ray scattering from crystalline polyaniline. Polym Commun 30:196–199

    CAS  Google Scholar 

  31. Yang CM, Chen CY (2005) Synthesis, characterisation and properties of polyanilines containing transition metal ions. Synth Met 153:133–136

    Article  CAS  Google Scholar 

  32. Kim JG, Pugmire DL, Battaglia D, Langell MA (2000) Analysis of the NiCo2O4 spinel surface with Auger and X-ray photoelectron spectroscopy. Appl Surf Sci 165:70–84

    Article  CAS  Google Scholar 

  33. Trung T, Trung TH, Ha CS (2005) Preparation and cyclic voltammetry studies on nickel-nanoclusters containing polyaniline composites having layer-by-layer structures. Electrochem Acta 51:984–990

    Article  CAS  Google Scholar 

  34. Wang YG, Li HQ, Xia YY (2006) Ordered whiskerlike polyaniline grown on the surface of mesoporous carbon and its electrochemical capacitance performance. Adv Mater 18:2619–2623

    Article  CAS  Google Scholar 

  35. Li GR, Feng ZP, Zhong JH, Wang ZL, Tong YX (2010) Electrochemical synthesis of polyaniline nanobelts with predominant electrochemical performances. Macromol 43:2178–2183

    Article  CAS  Google Scholar 

  36. Alemany P, Casanova D, Álvarez S (2012) Continuous symmetry measures of irreducible representations: application to molecular orbitals. Phys Chem Chem Phys 14:11823–11886

    Article  Google Scholar 

  37. Wang YG, Xia YY (2006) Hybrid aqueous energy storage cells using activated carbon and lithium-intercalated compounds: the C/LiMn2O4 System. J Electrochem Soc 153:A450–A454

    Article  CAS  Google Scholar 

  38. Wei HG, Zhu JH, Wu SJ, Wei SY, Guo ZH (2013) Electrochromic polyaniline/graphite oxide nanocomposites with endured electrochemical energy storage. Polym 54:1820–1831

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (No. 51062011).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hui Xu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, H., Wu, Jx., Li, Cl. et al. Investigation of polyaniline films doped with Co2+ as the electrode material for electrochemical supercapacitors. Ionics 21, 1163–1170 (2015). https://doi.org/10.1007/s11581-014-1267-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-014-1267-0

Keywords

Navigation