Skip to main content
Log in

Platinum nanoparticle-doped multiwalled carbon-nanotube-modified glassy carbon electrode as a sensor for simultaneous determination of atenolol and propranolol in neutral solution

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

In this paper, the simultaneous determination of β-blockers (atenolol (ATN) and propranolol (PRO)) was investigated using cyclic voltammetry (CV) and differential pulse voltammetry (DPV) at platinum nanoparticle-doped multiwalled carbon-nanotube-modified glassy carbon electrode (PtNPs/MWCNTs/GCE) in 0.1 M PBS (pH 7.4) solution. The modifier, PtNP-doped MWCNTs (PtNPs/MWCNTs), was characterized by transmission electron microscopy (TEM) and electrochemical method which showed an excellent character for electrocatalytic oxidization of ATN and PRO. In addition, the experimental parameters such as pH values, the concentration of PtNPs/MWCNTs, and the scan rate were optimized. CV and DPV results show that the β-blockers can be detected selectively and sensitively at modified GCE. Under the optimized condition, the detection limits of ATN and PRO are 1.17 and 0.15 μM (S/N = 3) with the linear ranges of 5.8–116 and 0.2–50 μM, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Hardman JG, Limbird LE, Gilman AG (1996) Goodman & Gilman’s—the pharmacological basis of therapeutics, 9th edn. McGraw-Hill, New York

    Google Scholar 

  2. WADA 2009 Prohibited List. <http://www.wada-ama.org>.

  3. Elshanawane AA, Mostafa SM, Elgawish MS (2009) Development and validation of a reversed-phase high-performance liquid chromatographic method for the simultaneous determination of amiloride hydrochloride, atenolol, hydrochlorothiazide and chlorthalidone in their combined mixtures. J AOAC Int 92:404–409

    CAS  Google Scholar 

  4. El-Saharty YS (2003) Simultaneous high-performance liquid chromatographic assay of furosemide and propranolol HCL and its application in a pharmacokinetic study. J Pharm Biomed Anal 33:699–709

    Article  CAS  Google Scholar 

  5. Partani P, Modhave Y, Gurule S, Khuroo A, Monif T (2009) Simultaneous determination of propranolol and 4-hydroxy propranolol in human plasma by solid phase extraction and liquid chromatography/electrospray tandem mass spectrometry. J Pharm Biomed Anal 50:966–976

    Article  CAS  Google Scholar 

  6. Vetuschi C, Ragno G (1990) Fourth UV derivative spectrophotometry for the simultaneous assay of atenolol and chlorthahdone in pharmaceuticals. Int J Pharm 65:177–181

    Article  CAS  Google Scholar 

  7. Al-Ghannam SM (2006) A simple spectrophotometric method for the determination of β-blockers in dosage forms. J Pharm Biomed Anal 40:151–156

    Article  CAS  Google Scholar 

  8. Zhang F, Du YX, Ye BF, Li P (2007) Study on the interaction between the chiral drug of propranolol and α1-acid glycoprotein by fluorescence spectrophotometry. J Photochem Photobiol B 86:246–251

    Article  CAS  Google Scholar 

  9. Park Y-J, Lee DW, Lee W-Y (2002) Determination of β-blockers in pharmaceutical preparations and human urine by high-performance liquid chromatography with tris(2,2′-bipyridyl)ruthenium(II) electrogenerated chemiluminescence detection. Anal Chim Acta 471:51–59

    Article  CAS  Google Scholar 

  10. Tsogas GZ, Stergiou DV, Vlessidis AG, Evmiridis NP (2005) Development of a sensitive flow injection-chemiluminescence detection method for the indirect determination of propranolol. Anal Chim Acta 541:149–155

    Article  Google Scholar 

  11. Idowu OS, Adegoke OA, Olaniyi AA (2004) Chlorimetric assay of propranolol tablets by derivatization: novel application of diazotized 4-amino-3,5-dinitrobenzoic acid (ADBA). J AOAC Int 87:573–578

    CAS  Google Scholar 

  12. Amin AS, Ragab GH, Saleh H (2002) Colorimetric determination of β-blockers in pharmaceutical formulations. J Pharm Biomed Anal 30:1347–1353

    Article  CAS  Google Scholar 

  13. Khalil S, Borham N (2000) Indirect atomic absorption spectrometric determination of pindolol, propranolol and levamisole hydrochlorides based on formation of ion-associates with ammonium reineckate and sodium cobaltinitrite. J Pharm Biomed Anal 22:235–240

    Article  CAS  Google Scholar 

  14. Khalil S, El-Rabiehi MM (2000) Indirect atomic absorption spectrometric determination of pindolol, propranolol and levamisole hydrochlorides based on formation of ion associates with manganese thiocyanate and potassium ferricyanide. J Pharm Biomed Anal 22:7–12

    Article  CAS  Google Scholar 

  15. El-Ries MA, Abou Attia FM, Ibrahim SA (2000) AAS and spectrophotometric determination of propranolol HCl and metoprolol tartrate. J Pharm Biomed Anal 24:179–187

    Article  CAS  Google Scholar 

  16. Tabrizi ABJ (2007) A simple spectrofluorimetric method for determination of piroxicam and propranolol in pharmaceutical preparations. Food Drug Anal 15:242–248

    CAS  Google Scholar 

  17. Ramesh KC, Gowda BG, Seetharamappa J, Keshavayya J (2003) Indirect spectrofluorimetric determination of piroxicam and propranolol hydrochloride in bulk and pharmaceutical preparations. J Anal Chem 58:1044–1047

    Article  Google Scholar 

  18. Brent Miller R (1991) A validated high-performance liquid chromatographic method for the determination of atenolol in whole blood. J Pharm Biomed Anal 9:849–853

    Article  Google Scholar 

  19. Gotardo MA, Tognolli JO, Pezza HR, Pezza L (2008) Detection of propranolol in pharmaceutical formulations by diffuse reflectance spectroscopy. Spectrochim Acta A Mol Biomol Spectrosc 69:1103–1109

    Article  Google Scholar 

  20. Pathak VN, Shukla MSR, Shuklahukla IC (1982) Direct titrimetric determination of the antihypertensive drugs methyldopa and propranolol in pharmaceutical preparations. Analyst 107:1086–1087

    Article  CAS  Google Scholar 

  21. Abbasi UM, Fateh C, Bhanger MI, Memon SA (1986) A rapid method for the determination of some antihypertensive and antipyretic drugs by thermometric titrimetry. Talanta 33:173–175

    Article  CAS  Google Scholar 

  22. Xu L, Guo Q, Yu H, Huang J, You T (2012) Simultaneous determination of three β-blockers at a carbon nanofiber paste electrode by capillary electrophoresis coupled with amperometric detection. Talanta 97:462–467

    Article  CAS  Google Scholar 

  23. Gagyi L, Gyéresi Á, Kilár F (2008) Role of chemical structure in stereoselective recognition of β-blockers by cyclodextrins in capillary zone electrophoresis. J Biochem Biophys Methods 70:1268–1275

    Article  CAS  Google Scholar 

  24. Wang Y, Wu Q, Cheng M, Cai C (2011) Determination of β-blockers in pharmaceutical and human urine by capillary electrophoresis with electrochemiluminescence detection and studies on the pharmacokinetics. J Chromatogr B 879:871–877

    Article  CAS  Google Scholar 

  25. Bai J, Ndamanisha JC, Liu L, Yang L, Guo LP (2010) Voltammetric detection of riboflavin based on or dered mesoporous carbon modified electrode. J Solid State Electrochem 14:2251–2256

    Article  CAS  Google Scholar 

  26. El-Ries MA, Abou-Sekkina MM, Wassel AA (2002) Polarographic determination of propranolol in pharmaceutical formulation. J Pharm Biomed Anal 30:837–842

    Article  CAS  Google Scholar 

  27. Ghoneim MM, Beltagi AM (2002) Partial flap ureteroneocystostomy for bilharzial strictures of lower ureter. A Radi Quim Anal 20:237–241

    CAS  Google Scholar 

  28. Gupta VK, Jain R, Radhapyari K, Jadon N, Agarwal S (2011) Voltammetric techniques for the assay of pharmaceuticals—a review. Anal Biochem 408:179–196

    Article  CAS  Google Scholar 

  29. Radi A, Wassel AA, El Ries MA (2004) Adsorptive behaviour and voltammetric analysis of propranolol at carbon paste electrode. Chem Anal (Warsaw) 49:51–58

    CAS  Google Scholar 

  30. Sartori ER, Medeiros RA, Rocha RC, Fatibello O (2010) Square-wave voltammetric determination of propranolol and atenolol in pharmaceuticals using a boron-doped diamond electrode. Talanta 81:1418–1424

    Article  CAS  Google Scholar 

  31. Xiaoxia L, Yanqing L, Jing W, Shu W (2010) Electrochemical behavior of propranolol hydrochloride at carbon nanotubes modified glassy carbon electrodes and its application. Chin J Pharm Anal 30:320–325

    Google Scholar 

  32. dos Santos SX, Cavalheiro ETG, Brett CMA (2010) Analytical potentialities of carbon nanotube/silicone rubber composite electrodes: determination of propranolol. Electroanal 22:2776–2783

    Article  Google Scholar 

  33. Nigović B, Marušić M, Jurić S (2011) A highly sensitive method for determination of β-blocker drugs using a Nafion-coated glassy carbon electrode. J Electroanal Chem 663:72–78

    Article  Google Scholar 

  34. Goyal RN, Gupta VK, Oyama M, Bacheeti N (2006) Differential pulse voltammetric determination of atenlolol in pharmaceutical formulations and urine using nano-gold modified indium tin oxide electrode. Electrochem Commun 8:65–70

    Article  CAS  Google Scholar 

  35. Goyal RN, Singh SP (2006) Voltammetric determination of atenolol at C60-modified glassy carbon electrodes. Talanta 69:932–937

    Article  CAS  Google Scholar 

  36. Nikolelis DP, Petropoulos SSE, Mitrokotsa MV (2002) A minisensor for the rapid screening of atenolol in pharmaceutical preparations based on surface-stabilized bilayer lipid membranes with incorporated DNA. Bioelectrochemistry 58:107–112

    Article  CAS  Google Scholar 

  37. Asma K, Sayed Mehdi G, Saeed M, Mohsen B (2013) Multivariate curve resolution-alternating least squares assisted by voltammetry for simultaneous determination of betaxolol and atenolol using carbon nanotube paste electrode. Bioelectrochemistry 94:100–107

    Article  Google Scholar 

  38. Cervini P, Ramos LA, Cavalheiro ETG (2007) Determination of atenolol at a graphite–polyurethane composite electrode. Talanta 72:206–209

    Article  CAS  Google Scholar 

  39. Guiseppi-Elie A, Lei C, Baughman R (2002) Direct electron transfer of glucose oxidase on carbon nanotubes. Nanotechnology 13:559–564

    Article  CAS  Google Scholar 

  40. Hrapovic S, Yliu Y, Male K, Luong J (2004) Electrochemical biosensing platforms using platinum nanoparticles and carbon nanotubes. Anal Chem 76:1083–1088

    Article  CAS  Google Scholar 

  41. Liu J, Cheng L, Song Y, Liu B, Dong S (2001) Simple preparation method of multilayer polymer films containing Pd nanoparticles. Langmuir 17:6747–6750

    Article  CAS  Google Scholar 

  42. Chakraborty S, Retna Raj C (2009) Pt nanoparticle-based highly sensitive platform for the enzyme-free amperometric sensing of H2O2. Biosens Bioelectron 24:3264–3268

    Article  CAS  Google Scholar 

  43. Zhou WZ, Xu L, Wu MJ, Xu LJ, Wang EK (1994) Determination of hydrazines by capillary zone electrophoresis with amperometric detection at a platinum particle-modified carbon fibre microelectrode. Anal Chim Acta 299:189–194

    Article  CAS  Google Scholar 

  44. Birkin PR, Elliot JM, Watson YE (2000) Electrochemical reduction of oxygenon mesoporous platinum microelectrodes. Chem Commun 17:1693–1694

    Article  Google Scholar 

  45. Ikariyama Y, Yamauchi S, Yukiashi T, Ushioda H (1987) One step fabrication of microbiosensor prepared by the codeposition of enzyme and platinum particles. Anal Lett 20:1791–1801

    Article  CAS  Google Scholar 

  46. Li L, Xing Y (2007) Pt-Ru nanoparticles supported on carbon nanotubes as methanol fuel cell catalysts. J Phys Chem C 111:2803–2808

    Article  CAS  Google Scholar 

  47. Sathe BR, Risbud MS, Patil S, Ajayakumar KS, Naik RC, Mulla IS, Pillai VK (2007) Highly sensitive nanostructured platinum electrocatalysts for CO oxidation: implications for CO sensing and fuel cell performance. Sensor Actuat A-Phys 138:376–383

    Article  CAS  Google Scholar 

  48. Wen D, Zou X, Liu Y, Shang L, Dong SJ (2009) Nanocomposite based on depositing platinum nanostructure onto carbon nanotubes through a one-pot, facile synthesis method for amperometric sensing. Talanta 79:1233–1237

    Article  CAS  Google Scholar 

  49. Rathod D, Dickinson C, Egan D, Dempsey E (2010) Platinum nanoparticle decoration of carbon materials with applications in non-enzymatic glucose sensing. Sensor Actuat B-Chem 143:547–554

    Article  CAS  Google Scholar 

  50. Liu Y, Wang D, Xu L, Hou HQ, You TY (2011) A novel and simple route to prepare a Pt nanoparticle-loaded carbon nanofiber electrode for hydrogen peroxide sensing. Biosens Bioelectron 26:4585–4590

    Article  CAS  Google Scholar 

  51. Harriman A, Millward GR, Neta P, Richoux MC (1988) Interfacial electron-transfer reactions between platinum colloids and reducing radicals in aqueous solution. J Phys Chem 92:1286–1290

    Article  CAS  Google Scholar 

  52. Wang J, Musameh M, Lin YH (2003) Solubilization of carbon nanotubes by nafion toward the preparation of amperometric biosensors. J Am Chem Soc 125:2408–2409

    Article  CAS  Google Scholar 

  53. Kretzschmar K, Jaenicke WZ (1971) Polarographic examination of the system folic acid–dihydrofolic acid–tetrahydrofolic acid. Z Naturforsch B 26:225–228

    CAS  Google Scholar 

  54. Alexeyeva N, Tammeveski K, Lopez-Cudero A, Solla-Gullón J, Feliu JM (2010) Electroreduction of oxygen on Pt nanoparticle/carbon nanotube nanocomposites in acid and alkaline solutions. Electrochim Acta 55:794–803

    Article  CAS  Google Scholar 

  55. Cui HF, Ye JS, Zhang WD, Wang J, Sheu FS (2005) Electrocatalytic reduction of oxygen by a platinum nanoparticle/carbon nanotube composite electrode. J Electroanal Chem 577:295–302

    Article  CAS  Google Scholar 

  56. A.B.ard, L.R. Faulkner (2001) Electrochemical methods fundamentals and applications. Wiley, p 97

  57. Bishop E, Hussein W (1984) Electroanal study of tricy clicantider pressants. Analyst 109:65–80

    Article  CAS  Google Scholar 

  58. Gaichore RR, Ai K (2014) Srivastava, Electrocatalytic determination of propranolol hydrochloride at carbon paste electrode based on multiwalled carbon-nanotubes and c-cyclodextrin. J Incl Phenom Macrocycl Chem 78:195–206

    Article  CAS  Google Scholar 

  59. Shadjou N, Hasanzadeh M, Saghatforoush L, Mehdizadeh R, Jouyban A (2011) Electrochemical behavior of atenolol, carvedilol and ropranolol on copper-oxide nanoparticles. Electrochim Acta 58:336–347

    Article  CAS  Google Scholar 

  60. Chinese Pharmacopoeia (The 2010 version) <http://www.drugfuture.com/standard/search.aspx>.

Download references

Acknowledgments

The authors gratefully acknowledge the financial support by the Education Department of Liaoning Province (Project No. L2012366).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li Sanming.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kun, Z., Hongtao, C., Yue, Y. et al. Platinum nanoparticle-doped multiwalled carbon-nanotube-modified glassy carbon electrode as a sensor for simultaneous determination of atenolol and propranolol in neutral solution. Ionics 21, 1129–1140 (2015). https://doi.org/10.1007/s11581-014-1266-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-014-1266-1

Keywords

Navigation