Skip to main content
Log in

Low-temperature sintering effects on NASICON-structured LiSn2P3O12 solid electrolytes prepared via citric acid-assisted sol-gel method

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

LiSn2P3O12 with sodium (Na) super ionic conductor (NASICON)-type rhombohedral structure was successfully obtained at low sintering temperature, 600 °C via citric acid-assisted sol-gel method. However, when the sintering temperature increased to 650 °C, triclinic structure coexisted with the rhombohedral structure as confirmed by X-ray diffraction analysis. Conductivity–temperature dependence of all samples were studied using impedance spectroscopy in the temperature range 30 to 500 °C, and bulk, grain boundary and total conductivity increased as the temperature increased. The highest bulk conductivity found was 3.64 × 10−5 S/cm at 500 °C for LiSn2P3O12 sample sintered at 650 °C, and the lowest bulk activation energy at low temperature was 0.008 eV, showing that sintering temperature affect the conductivity value. The voltage stability window for LiSn2P3O12 sample sintered at 600 °C at ambient temperature was up to 4.4 V. These results indicated the suitability of the LiSn2P3O12 to be exploiting further for potential applications as solid electrolytes in electrochemical devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Goodenough JB, Hong HY, Kafalas JA (1976) Fast Na+-ion transport in skeleton structures. J Mat Res Bull 11:203

    Article  CAS  Google Scholar 

  2. Fergus JW (2012) Ion transport in sodium ion conducting solid electrolytes. Solid State Ionics 227:102. doi:10.1016/j.ssi.2012.09.019

    Article  CAS  Google Scholar 

  3. Knauth P (2009) Inorganic solid Li ion conductors: an overview. Solid State Ionics 180:911. doi:10.1016/j.ssi.2009.03.022

    Article  CAS  Google Scholar 

  4. Kumar PP, Yashonath S (2006) Ionic conduction in the solid state. J Chem Sci 118:135. doi:10.1007/BF02708775

    Article  CAS  Google Scholar 

  5. Martinez A, Rojo JM, Iglesias JE, Sanz J, Rojas RM (1994) Formation process of LiSn2(PO4)3, a monoclinically distorted NASICON-type structure. Chem Matter 6:1790

    Article  CAS  Google Scholar 

  6. Martinez-juarez A, Rojo JM, Iglesias JE, Sanz J (1995) Reversible monoclinic-rhombohedral transformation in LiSn2(PO4)3 with NASICON-type structure. Chem Matterm 7:1857

    Article  CAS  Google Scholar 

  7. Norhaniza R, Subban RHY, Mohamed NS (2010) Effects of sintering temperature on the structure and conductivity of LiSn2P3O12 prepared by mechanical milling method. Adv Mater Res 129–131:338

    Article  Google Scholar 

  8. Cui WJ, Yi J, Chen L, Wang CX, Xia YY (2012) Synthesis and electrochemical characteristics of NASICON-structured LiSn2(PO4)3 anode material for lithium-ion batteries. J Power Sources 217:77. doi:10.1016/j.jpowsour.2012.05.117

    Article  CAS  Google Scholar 

  9. Iglesias JE, Martinez A, Rojo M (1997) Low-temperature triclinic distortion in NASICON-type LiSn2(PO4)3. J Solid State Chem 130:322

    Article  CAS  Google Scholar 

  10. Martinez-Juarez A, Jimenez R, Martin PD, Ibanez J, Rojo JM (1997) Effect of the phase transition of LiSn2(PO4)3 on the Li+ ion conduction in LiSn2(PO4)3—Teflon composites. J Phys Condensed Matter 9:4119. doi:10.1088/0953-8984/9/20/011

    Article  CAS  Google Scholar 

  11. Lazarraga MG, Iban J, Tabellout M, Rojo JM (2004) On the aggregation process of ceramic LiSn2P3O12 particles embedded in Teflon matrix. Compos Sci Technol 64:759. doi:10.1016/j.compscitech.2003.08.003

    Article  CAS  Google Scholar 

  12. Kothari DH, Kanchan DK, Sharma P (2014) Electrical properties of Li-based NASICON compounds doped with yttrium oxide. Ionics. doi:10.1007/s11581-014-1087-2

    Google Scholar 

  13. Norhaniza R, Subban RHY, Mohamed NS (2011) Ion conduction in vanadium-substituted LiSn2P3O12. J Matter Sci 46:7815

    Article  CAS  Google Scholar 

  14. Norhaniza R, Subban RHY, Mohamed NS, Ahmad A (2012) Chromium substituted LiSn2P3O12 solid electrolyte. Int J Electrochem Sci 7:10254

    CAS  Google Scholar 

  15. Norhaniza R, Subban RHY, Mohamed NS (2013) Cr and V substituted LiSn2P3O12 solid electrolyte materials. J Power Sources 244:300. doi:10.1016/j.jpowsour.2012.12.119

    Article  CAS  Google Scholar 

  16. Adnan SBR, Mohamed NS (2014) Properties of novel Li4−3xCrxSiO4 ceramic electrolyte. Ceram International 40:5033. doi:10.1016/j.ceramint.2013.08.136

    Article  CAS  Google Scholar 

  17. Julien C, Rangan S, Massot M (1999) Studies of LiNi0.6Co0.4O2 cathode material prepared by the citric acid-assisted sol-gel method for lithium batteries. J Sol-Gel Sci Tec 15:63

    Article  CAS  Google Scholar 

  18. Krok F (1987) Influence of sintering conditions on chemical composition of NASICON. Solid State Ionics 24:21. doi:10.1016/0167-2738(87)90062-2

    Article  CAS  Google Scholar 

  19. Zhou M, Ahmad A (2007) Synthesis, processing and characterization of NASICON solid electrolytes for CO2 sensing applications. Sensor Actuat B-Chemical 122:419. doi:10.1016/j.snb.2006.06.011

    Article  CAS  Google Scholar 

  20. Gaber A, Rahim MAA, Abdel-salam MN (2014) Influence of calcination temperature on the structure and porosity of nanocrystalline SnO2 synthesized by a conventional precipitation method. Int J Electrochem Sci 9:81

    Google Scholar 

  21. Ejehi F, Marashi SPH, Ghaani MR, Haghshenas DF (2012) The synthesis of NASICON-type ZrNb(PO4)3 structure by the use of Pechini method. Ceram Int 38:6857. doi:10.1016/j.ceramint.2012.05.086

    Article  CAS  Google Scholar 

  22. Mariappan C, Govindaraj G (2005) Conductivity and ion dynamic studies in the Na4+7xTi1-3x(PO4)3.3-x (0≤≤0.6) NASICON material. Solid State Ionics 176:1311

    Article  CAS  Google Scholar 

  23. Kurazhkovskaya VS, Bykov DM, Borovikova EY, Boldyrev NY, Mikhalitsyn L, Orlova I (2010) Vibrational spectra and factor group analysis of lanthanide and zirconium phosphates MIII 0.33Zr2(PO4)3, where MIII=Y, La–Lu. Vib Spectrosc 52:137

    Article  CAS  Google Scholar 

  24. Antony CJ, Aatiq (2011) FT-IR and FT-Raman study of NASICON type phosphates, ASnFe(PO4)3 [A=Na2, Ca, Cd]. Spectrochim Acta A 78:415. doi:10.1016/j.saa.2010.11.003

    Article  CAS  Google Scholar 

  25. Bohre A, Shrivastava OP (2013) Crystal chemistry of immobilization of divalent Sr in ceramic matrix of sodium zirconium phosphates. J Nucl Mater 433:486. doi:10.1016/j.jnucmat.2012.10.012

    Article  CAS  Google Scholar 

  26. Bohre A, Avasthi K, Singh B, Shrivastava OP (2014) Crystallographic evaluation of titanate ceramics as a host structure for immobilization of samarium. Radiochemistry 56:92. doi:10.1134/S1066362214010184

    Article  CAS  Google Scholar 

  27. Qiu F, Zhu Q, Yang X, Quan Y, Sun L (2003) Investigation of CO2 sensor based on NASICON synthesized by a new sol–gel process. Sensor Actuat B-Chem 93:23. doi:10.1016/S0925-4005(03)00184-9

    Google Scholar 

  28. Adnan SBR, Mohamed NS (2012) Conductivity and dielectric studies of Li2ZnSiO4 ceramic electrolyte synthesized via citrate sol gel method. Int J Electrochem Sci 7:9844

    CAS  Google Scholar 

  29. Traversa E, Aono H, Sadaoka Y, Montanaro L (2000) Electrical properties of sol–gel processed NASICON having new compositions. Sensor Actuat B-Chemical 65:204. doi:10.1016/S0925-4005(99)00293-2

    Article  CAS  Google Scholar 

  30. Chourashiya MG (2013). Studies on synthesis and characterizations of gadolinium doped ceria solid electrolyte (Doctoral Dissertation, Shivaji University), retrieved from: http://shodhganga.inflibnet.ac.in/

  31. Almond DP, West AR (1983) Mobile ion concentrations in solid electrolytes from an analysis of ac conductivity. Solid State Ionics 9&10:277

    Article  Google Scholar 

  32. Teo LP, Buraidah MH, Nor AFM, Majid SR (2012) Conductivity and dielectric studies of Li2SnO3. Ionics 18:655

    Article  CAS  Google Scholar 

  33. Vijayakumar M, Hirankumar G, Bhuvaneswari MS, Selvasekarapandian S (2003) Influence of B2O3 doping on conductivity of LiTiO2 electrode material. J Power Sources 117:43

    Article  Google Scholar 

  34. Savitha T, Selvasekarapandian S, Ramya CS, Bhuvaneswari MS, Hirankumar G, Baskaran R, Angelo PC (2006) Structural and ionic transport properties of Li2AlZr[PO4]3. J Power Sources 157:533

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to extend their gratitude towards University of Malaya for allowing this research to be carried out. This work was supported by the Fundamental Research Grant Scheme, FP006-2013B, by the Ministry of Higher Education, Malaysia. A highly gratitude goes to Universiti Teknologi Mara (UiTM) and the Ministry of Higher Education, Malaysia, for the scholarship under SLAI given to Nur Amalina Mustaffa.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to N. A. Mustaffa or N. S. Mohamed.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mustaffa, N.A., Adnan, S.B.R.S., Sulaiman, M. et al. Low-temperature sintering effects on NASICON-structured LiSn2P3O12 solid electrolytes prepared via citric acid-assisted sol-gel method. Ionics 21, 955–965 (2015). https://doi.org/10.1007/s11581-014-1257-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-014-1257-2

Keywords

Navigation