Skip to main content
Log in

Mechanically exfoliated ultra-thin WO3 nanostructures: study of their enhanced electrical properties

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

Ultra-thin orthorhombic β-WO3 nanoflakes were prepared by two-step sol-gel-exfoliation method and sintered at 550 and 650 °C, respectively. Their morphology and electrical properties were investigated by the following material characterisation techniques: energy-dispersive X-ray spectroscopy (EDX), scanning electron microscopy (SEM), current sensing force spectroscopy atomic force microscopy (CSFS-AFM, or PeakForce TUNA™), Fourier transform infra-red absorption spectroscopy (FTIR), linear sweep voltammetry (LSV) and Raman spectroscopy. CSFS-AFM analysis exhibited good correlation between the topography of the developed nanostructures and various features of WO3 nanoflakes. It was found that β-WO3 nanoflakes annealed at 550 °C possess distinguished and exceptional thickness-dependent properties in comparison with the bulk, microstructured and nanostructured WO3 synthesized at alternative temperatures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Zhuiykov S, Kats E (2013) Ionics 19:825–865

    Article  CAS  Google Scholar 

  2. Balendhran S, Deng J, Ou JZ, Walia S, Scott J, Tang J, Wang KL, Field MR, Russo S, Zhuiykov S, Strano MS, Medhekar N, Sriram S, Bhaskaran M, Kalantar-zadeh K (2013) Adv Mater 25:109–114

    Article  CAS  Google Scholar 

  3. Ou JZ, Balendhran S, Field MA, McCulloch DG, Zoolfakar AS, Rani RA, Zhuiykov S, O’Mullane AP, Kalantar-zadeh K (2012) Nanoscale 4:5980–5988

    Article  CAS  Google Scholar 

  4. Deb SK (2008) Sol Energy Mater Sol Cells 92:245–258

    Article  CAS  Google Scholar 

  5. Berak JM, Sienko MJ (1970) J Solid State Chem 2:109–133

    Article  CAS  Google Scholar 

  6. Ham DJ, Phuruangrat A, Thongtem S, Lee JS (2010) Chem Eng J 165:365–369

    Article  CAS  Google Scholar 

  7. Granquist CG (2000) Sol Energy Mater Sol Cells 60:201–262

    Article  Google Scholar 

  8. Lee SH, Deshpandle R, Parilla PA, Jones KM, To B, Mahan AH, Dillon AC (2006) Adv Mater 18:763–766

    Article  CAS  Google Scholar 

  9. Ou JZ, Rani RA, Balendhran S, Zoolfakar AS, Field MR, Zhuiykov S, O’Mullane AP, Kalantar-zadeh K (2013) Electrochem Comm 27:128–132

    Article  CAS  Google Scholar 

  10. Zhuiykov S (2014) Nanostructured semiconductor oxides for the next generation of electronics and functional devices: properties and applications. Woodhead, Cambridge, 484

    Google Scholar 

  11. Labidi A, Jacolin C, Bendahan M, Abdelghani A, Guerin J, Aguir K, Maaref M (2005) Sens Actuators B: Chem 106:713–718

    Article  CAS  Google Scholar 

  12. Balendhran S, Walia S, Nili H, Ou JZ, Zhuiykov S, Kaner RB, Sriram S, Bhaskaran M, Kalantar-zadeh K (2013) Adv Funct Mater 23:3952–3970

    Article  CAS  Google Scholar 

  13. Zhang Y, Chang TR, Zhou B, Cui YT, Yan H, Liu Z, Schmitt F, Lee J, Moore R, Chen Y, Lin H, Jeng HT, Mo SK, Hussain Z, Bansil A, Shen ZX (2014) Nature: Nanotechnol 9:111–115

    CAS  Google Scholar 

  14. Balendhran S, Ou JZ, Bhaskaran M, Sriram S, Ippolito S, Vasic Z, Kats E, Bhargava S, Zhuiykov S, Kalantar-zadeh K (2012) Nanoscale 4:461–466

    Article  CAS  Google Scholar 

  15. Phuruangrat A, Ham DJ, Hong SJ, Thongtem S, Lee JS (2010) J Mater Chem 20:1683–1690

    Article  CAS  Google Scholar 

  16. Dai ZR, Pan ZW, Wang ZL (2003) Adv Funct Mater 13:9–24

    Article  Google Scholar 

  17. Lee KD (1997) Thin Solid Films 302:84–88

    Article  CAS  Google Scholar 

  18. Sivakumar R, Gopalakrishnan R, Jayachandran M, Sanjeeviraja C (2007) Opt Mater 29:679–687

    Article  CAS  Google Scholar 

  19. Ashkarran AA, Zad AI, Ahadian MM, Ardakani SAM (2008) Nanotechnology 19:195709

    Article  CAS  Google Scholar 

  20. Zheng H, Jian ZO, Strano MS, Kaner RB, Mitchel A, Kalantar-zadeh K (2011) Adv Funct Mater 21:2175–2196

    Article  CAS  Google Scholar 

  21. Desbief S, Hergue N, Douheret O, Surin M, Dobuis P, Geerts Y, Lazzaroni R, Leclere P (2012) Nanoscale 4:2705–2712

    Article  CAS  Google Scholar 

  22. Zoolfakar AS, Latham K, Ou JZ, Zhuiykov S, Kalantar-zadeh K (2013) J Phys Chem C 117:19984–19990

    Article  Google Scholar 

  23. Ganesan R, Lee JS (2006) J Power Sources 157:217–221

    Article  CAS  Google Scholar 

  24. Sayama K, Yoshida R, Kusama H, Okabe K, Abe Y, Arakawa H (1997) Chem Phys Lett 277:387–391

    Article  CAS  Google Scholar 

  25. Zhuiykov S, Kats E (2012) Ionics 18:797–802

    Article  CAS  Google Scholar 

  26. Kelley TW, Granstrom EL, Frisbie CD (1999) Adv Mater 11:261–264

    Article  CAS  Google Scholar 

  27. Leatherman G, Durantini EN, Gust D, Moore TA, Moore AL, Stone S, Zhou Z, Rez P, Liu YZ, Lindsay SM (1999) J Phys Chem B 103:4006–4010

    Article  CAS  Google Scholar 

  28. MacDonald GA, Veneman PA, Placencia D, Armstrong NR (2012) ACS Nano 6:9623–9636

    Article  CAS  Google Scholar 

  29. Bolsee JC, Oosterbaan WD, Lutsen L, Vanderzande D, Manca J (2011) Org Electr 12:2084–2089

    Article  CAS  Google Scholar 

  30. Breedon M, Spizziri P, Taylor M, du Plessis J, McCulloch D, Zhu J, Yu L, Hu Z, Rix C, Wlodarski W, Kalantar-zadeh K (2010) Cryst Growth Des 10:430–439

    Article  CAS  Google Scholar 

  31. Ho GW, Chua KJ, Siow DR (2012) Chem Eng J 181–182:661–666

    Article  Google Scholar 

  32. Yan Z, Wei W, Xie J, Meng S, Lu X, Zhu J (2013) J Power Sour 222:218–224

    Article  CAS  Google Scholar 

  33. Sadek AZ, Zheng H, Breedon M, Bansal V, Bhargava SK, Latham K, Zhu J, Yu L, Hu Z, Spizziri PG, Wlodarski W, Kalantar-zadeh K (2009) Langmuir 25:9545–9551

    Article  CAS  Google Scholar 

  34. Chen X, Zhou Y, Liu Q, Li Z, Liu J, Zou Z (2012) Appl Mater Interfaces 4:3372–3377

    Article  CAS  Google Scholar 

  35. Shpak AP, Korduban AM, Medvedskij MM, Kanduba VO (2007) J Electri Spectrosc Relat Phenom 156–158:172–179

    Article  Google Scholar 

  36. Kanan SM, Tripp CP (2007) Science 11:19–27

    CAS  Google Scholar 

  37. Zhuiykov S (2009) Ionics 15:507–512

    Article  CAS  Google Scholar 

  38. Kanan SM, Lu Z, Fox JK, Bernhardt G, Tripp CP (2002) Langmuir 18:1707–1712

    Article  CAS  Google Scholar 

  39. Davydov A (2003) Molecular spectroscopy of oxide catalyst surfaces, Wiley, New York

  40. Lu Z, Kanan SM, Tripp CP (2002) J Mater Chem 12:983–989

    Article  CAS  Google Scholar 

  41. Hollins P (1992) Suf Sci Rep 16:51–94

    Article  CAS  Google Scholar 

  42. Nonaka K, Takase A, Miyakawa K (2003) J Mater Sci Lett 12:274–277

    Article  Google Scholar 

  43. Fang GJ, Liu ZL, Sun GC, Yao KL (2001) Phys Status Solidi A Appl Res 184:129–132

    Article  CAS  Google Scholar 

  44. Balaji S, Albert AS, Djaoued Y, Bruning R (2009) J Raman Spectrosc 40:92–100

    Article  CAS  Google Scholar 

  45. Cremonesi A, Bersani D, Lottici PP, Djaoued Y, Ashrit PV (2004) Non-Cryst Solids 345–346:500–507

    Article  Google Scholar 

  46. Cazznelli E, Vinegoni C, Mariotto G, Kuzmin A, Purans J (1999) J Solid State Chem 143:24–32

    Article  Google Scholar 

  47. Zhuiykov S (2012) Sensors Actuators B: Chem 161:1–20

    Article  CAS  Google Scholar 

  48. Zhuiykov S (1996) Int J Hydr Energy 21:749–759

    Article  CAS  Google Scholar 

  49. Zhuiykov S, Kats E, Kalantar-zadeh K, Li Y (2013) IEEE Trans Nanotechnol 12:641–648

    Article  CAS  Google Scholar 

  50. Fortunato E, Barquinha P, Martins R (2012) Adv Mater 24:2945–2986

    Article  CAS  Google Scholar 

  51. Iwasaki M, Park W (2008) J Nanomater 2008:169536

    Article  Google Scholar 

  52. Phuruangrat A, Ham DJ, Thongtem S, Lee JS (2009) Electrochem Commun 11:1740–1743

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The work was supported by the Research and Development Program of both CSIRO Sensors and Sensor Networks Transformational Capability Platform (SSN TCP) and CSIRO Manufacturing Flagship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Serge Zhuiykov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhuiykov, S., Kats, E. Mechanically exfoliated ultra-thin WO3 nanostructures: study of their enhanced electrical properties. Ionics 21, 775–784 (2015). https://doi.org/10.1007/s11581-014-1248-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-014-1248-3

Keywords

Navigation