Skip to main content
Log in

Chemically and electrochemically prepared graphene/MnO2 nanocomposite electrodes for zinc primary cells: a comparative study

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

In this study, chemically and electrochemically derived graphenes (CG and EG) were synthesized to form manganese dioxide (α-MnO2)/graphene nanocomposite cathode material for zinc primary cell. The discharge capacity of prepared nanocomposites was studied using Swagelok-type cell setup, where α-MnO2/graphene was used as a cathode and zinc as an anode along with an electrolyte (ZnCl2). Electrical conductivity and discharge behaviors of the CG and EG samples were studied in detail. The EG sample showed a high discharge capacity of 337 mAh g−1, whereas the CG sample showed a discharge capacity of 205 mAh g −1. More importantly, the discharge capacity of the EG sample-based cathode was 64 % higher than that of the CG sample-based cathode. The above observation suggests that EG sample serves as an effective cathode material for zinc-based primary battery applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Vivekchand SRC, Rout CS, Subramanyam KS, Govindaraj A, Rao CNR (2008) Graphene-based electrochemical super capacitors. J Chem Sci 120:9–13

    Article  CAS  Google Scholar 

  2. Wu H, Liu J, Aksay IA, Lin Y (2010) Graphene based electro chemical sensors and biosensors. Electro Analy 22(10):1027–36

    Article  Google Scholar 

  3. Shinde DB, Debgupta J, Kushwaha A, Aslam M, Pillai VK (2011) Electrochemical unzipping of multi-walled carbon nanotubes for facile synthesis of high-quality graphene nanoribbons. J Ame Chem Soci 133:4168

    Article  CAS  Google Scholar 

  4. Yoo EJ, Kim J, Hosono E, Zhou HS, Kudo T, Honma I (2008) Large reversible Li storage of graphene nanosheet families for use in rechargeable lithium ion batteries. Nano Lett 8:2277–82

    Article  CAS  Google Scholar 

  5. Wang C, Li D, Too CO, Wallace GG (2009) Electrochemical properties of graphene paper electrodes used in lithium batteries. Chem Mater 21(13):2604–06

    Article  CAS  Google Scholar 

  6. Sima M, Enculescu I, Sima A (2011) Preparation of graphene and its application in dye-sensitized solar cells. Optoelect Adv Mater 5:414–18

    CAS  Google Scholar 

  7. Seger B, Kamat PV (2009) Electro catalytically active graphene–platinum nano composite. Role of 2-D carbon support in PEM fuel cells. J Phys Chem C 113(19):7990–95

    Article  CAS  Google Scholar 

  8. Wu JB, Becerril HA, Bao ZN, Liu ZF, Chen YS, Peumans P (2008) Organic solar cells with solution-processed graphene transparent electrodes. Appl Phys Lett 92:263302–304

    Article  Google Scholar 

  9. Dong LX, Chen Q (2010) Properties, synthesis, and characterization of graphene. Mater Sci 4:45–54

    Google Scholar 

  10. Tang L, Wang Y, Li Y, Feng H, Lu J, Li J (2009) Preparation, structure, and electrochemical properties of reduced graphene sheet films. Adv Func Mater 19:2782–89

    Article  CAS  Google Scholar 

  11. Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV (2004) Electric field effect in atomically thin carbon films. Science 306:666–9

    Article  CAS  Google Scholar 

  12. Eda G, Fanchini G, Chhowalla M (2008) Large-area ultrathin films of reduced graphene oxide as a transparent and flexible electronic material. Nature Nanotech 3:270–27

    Article  CAS  Google Scholar 

  13. Simya OK, Selvam M, Karthik A, Rajendran V (2014) Dye sensitized solar cells (DSSC) based on visible light active TiO2 heterojunction nanoparticles. Synthetic Metal 188:124–129

    Article  CAS  Google Scholar 

  14. Park S, Ruoff RS (2009) Chemical methods for the production of graphenes. Nature Nanotech 4:217–24

    Article  CAS  Google Scholar 

  15. Wang G, Wang B, Park J, Wang, Sun YB, Yao J (2009) High efficient and large-scale synthesis of graphene by electrolytic exfoliation. Carbon 473:242–46

    Google Scholar 

  16. Luo Z, Lu Y, Somers LA, Johnson AT (2009) High yield preparation of macroscopic graphene oxide membranes. J Ame Chem Soc 131(3):898–9

    Article  CAS  Google Scholar 

  17. O’Brien M, Nichols B (2010) CVD synthesis and characterization of graphene thin films. Army research laboratory ARL-TR- 5047

  18. Reina A, Jia XT, Ho LY (2009) Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition. Nano Lett 9(1):30–35

    Article  CAS  Google Scholar 

  19. Reina A, Jia XT, Ho J, Nezich D, Son H, Bulovic V, Dresselhaus MS, Kong J (2009) Synthesis of N-doped graphene by chemical vapor deposition and its electrical properties. Nano Lett 9(5):1752–1758

    Article  Google Scholar 

  20. Choucair M, Thordarson P, Stride JA (2009) Gram-scale production of graphene based on solvothermal synthesis and sonication. Nature Nanotech 4:30–33

    Article  CAS  Google Scholar 

  21. Singh DK, Iyery PK, Giriz PK (2011) Improved chemical synthesis of graphene using a safer solvothermal route. Inter J Nano Sci 10(1):1–4

    Google Scholar 

  22. Titelman GI, Gelman V, Bron S, Khalfin RL, Cohen Y, Bianco-Peled H (2005) Synthesis of water soluble graphene. Carbon 43:641–649

    Article  CAS  Google Scholar 

  23. Liu N, Luo F, Wu H, Liu Y, Zhang C, Chen J (2008) One-step ionic-liquid-assisted electrochemical synthesis of ionic-liquid-functionalized graphene sheets directly from graphite. Adv Func Mater 18:1518–25

    Article  CAS  Google Scholar 

  24. Kaniyoor A, Baby T, Ramaprabhu S (2010) Graphene synthesis via hydrogen induced low temperature exfoliation of graphite oxide. J Mater Chem 20:8467–69

    Article  CAS  Google Scholar 

  25. Selvam M, Sakthipandi K, Suryaprabha R, Saminathan K, Rajendran V (2013) Synthesis and characterisation of electrochemically-reduced graphene. Bulli Mater Sci 36(7):1315–1321

    Article  CAS  Google Scholar 

  26. Su CY, Lu AU, Xu Y, Chen FR, Khlobystov AN, Li LJ (2011) High-quality thin graphene films from fast electrochemical exfoliation. ACS Nano 5(3):2332–2339

    Article  CAS  Google Scholar 

  27. Gijie S, Han S, Wang M, Wang KL, Kaner RB (2007) A chemical route to graphene for device applications. Nano Lett 7:3394–3398

    Article  Google Scholar 

  28. Stankovih S, Dikin DA, Dommett GHB, Rohlhaas KM, Zimney EJ, Stach EA (2006) Graphene based composite material. Nature 442:282–6

    Article  Google Scholar 

  29. Wang JJ, Zhu MY, Outlaw RA, Zhao X, Manos DM, Holloway BC, Mammana VP (2004) Synthesis and field emission properties of carbon nanostructures. Appl Phys Lett 85:1265

    Article  CAS  Google Scholar 

  30. Ju HM, Choi SH, Huh SH (2010) X- ray diffraction patterns of thermally-reduced graphenes. J Korean Phys Soci 57:1649–52

    Article  CAS  Google Scholar 

  31. Parthasarathy G, Sreedhar B, Chetty RK (2006) Spectroscopic and X-ray diffraction studies on fluid deposited rhombohedral graphite from the Eastern Ghats Mobile Belt. India Curr Sci 90(7):995–00

    CAS  Google Scholar 

  32. Ghosh D, Chandra S, Chakraborty A, Ghosh SK, Pramanik PA (2010) Novel graphene oxide para amino benzoic acid nanosheet as effective drug delivery system to treat drug resistance bacteria. Inter J Pharm Sci Drug Res 2(2):127–133

    CAS  Google Scholar 

  33. Ramesh GK, Sampath S (2009) Electrochemical reduction of oriented graphene oxide films: an in situ Raman spectro electrochemical study. J Phys Chem C 113(19):7985–89

    Article  Google Scholar 

  34. Ferrari AC (2006) Raman spectrum of graphene and graphene layers. Phys Rev Lett 97:18

    Google Scholar 

  35. Ni Z, Wang Y, Yu T, Shen Z (2008) Raman spectroscopy and imaging of graphene. Nano Res 1:273–91

    Article  CAS  Google Scholar 

  36. Krishnamurthy K, Veerapandian M, Mohan R, Kim SJ (2008) Investigation of Raman and photoluminescence studies of reduced graphene oxide sheets. Appl Phys A MaterSci Proce 90:1

    Google Scholar 

  37. Ferrari AC, Robertson J (2000) Interpretation of Raman spectra of disordered and amorphous. Carbon Phys Rev B 61:14095–07

    Article  CAS  Google Scholar 

  38. Schwab T, Burg BR, Schirmar NC, Poulikakos D (2009) An electrical method for the measurement of the thermal and electrical conductivity of reduced graphene oxide nanostructures. Nano Tech 20:405704

    Google Scholar 

  39. Sundar Pethaiah S, Arun Kumar J, Kalyani P (2011) Improvement in the discharge characteristics of zinc–carbon primary cells: a comparative study with various carbon additives. Ionics 17:339–342

    Article  Google Scholar 

  40. Srither SR, Selvam M, Arunmetha S, Yuvakkumar R, Saminathan K, Rajendran V (2013) Enhancement of discharge capacity of Mg/MnO2 primary cell with nano-MnO2 as cathode. Sci Adv Mater 5:1–5

    Article  Google Scholar 

  41. Garcia EM, Tarôco HA, Melo JOF, Silva APCM, Oliveira IMF (2013) Electrochemical recycling of Zn from spent Zn–MnO2 batteries. Ionics 19:1699–1703

    Article  CAS  Google Scholar 

  42. Xu C, Li B, Du H, Kand F (2012) Energetic zinc ion chemistry: the rechargeable zinc ion battery. Angew Chem Int Ed 51:933–935

    Article  CAS  Google Scholar 

  43. Kim KS, Zhao Y, Jang H (2009) Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature 457(7230):706–10

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The author (M. Selvam) is thankful to the Department of Science and Technology (DST), New Delhi, for providing the Inspire fellowship (IF110749) to carry out the research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Saminathan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Selvam, M., Srither, S.R., Saminathan, K. et al. Chemically and electrochemically prepared graphene/MnO2 nanocomposite electrodes for zinc primary cells: a comparative study. Ionics 21, 791–799 (2015). https://doi.org/10.1007/s11581-014-1234-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-014-1234-9

Keywords

Navigation