Skip to main content
Log in

Effect of V-doping on the structure and conductivity of garnet-type Li5La3Nb2O12

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

The effect of isovalent V substitution for Nb in Li5La3Nb2O12 on the electrical conductivity properties of the garnet-type structure was investigated by various physical methods, including powder X-ray diffraction (PXRD), scanning electron microscopy (SEM), and 7Li nuclear magnetic resonance (NMR) spectroscopy. Garnet-type metal oxides of the nominal chemical formula, Li5La3Nb2−xVxO12 (x =  0 – 0.25) were prepared by conventional solid-state method at elevated temperature in air. PXRD results showed that the cubic garnet-type structure with space group (s.g.) of Ia-3d was maintained, but several peaks attributed to secondary phase LaVO4 (s.g. P2 1 /n) were also observed. SEM measurements indicate doping V for Nb improved particle-to-particle contact. The effect of V substitution for Nb in Li5La3Nb2O12 on ionic conductivity was also studied by AC impedance spectroscopy. The total (bulk + grain boundary) conductivity gradually increased with V content up until x = 0.15 and decreased thereafter. The x = 0.15 showed the highest total conductivity of 6 × 10−6 S cm−1 at room temperature, with the lowest activation energy of 0.37 eV.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Thangadurai V, Kaack H, Weppner W (2003) J Am Cera Soc 86:437–440

    Article  CAS  Google Scholar 

  2. Thangadurai V, Sumaletha N, Pinzaru D (2014) Chem Soc Rev 43:4714–4727

    Article  CAS  Google Scholar 

  3. Koch B, Vogel M (2008) Solid State Nucl Mag 34:37–43

    Article  CAS  Google Scholar 

  4. O'Callaghan MP, Cussen EJ (2008) Solid State Sci 10:390–395

    Article  Google Scholar 

  5. Van Wullen L, Echelmeyer T, Meyer H, Wilmer D (2007) Phys Chem Chem Phys 9:3298–3303

    Article  Google Scholar 

  6. Cussen EJ (2010) J Mater Chem 20:5167–5173

    Article  CAS  Google Scholar 

  7. Thangadurai V, Weppner W (2005) Adv Func Mater 15:107–112

    Article  CAS  Google Scholar 

  8. Murugan R, Thangadurai V, Weppner W (2008) Appl Phys A 91:615–620

    Article  CAS  Google Scholar 

  9. Percival J, Apperley D, Slater PR (2008) Solid State Ionic 179:1693–1696

    Article  CAS  Google Scholar 

  10. Awaka J, Kijima N, Takahashi Y, Hayakawa H, Akimoto J (2009) Solid State Ion 180:602–606

    Article  CAS  Google Scholar 

  11. Thangadurai V, Weppner W (2005) Adb Func Mater 15:107–112

    Article  CAS  Google Scholar 

  12. Hitz GT, Wachsman ED, Thangadurai V (2013) J Electrochem Soc 160:A1248–A1255

    Article  CAS  Google Scholar 

  13. Narayanan S, Ramezanipour F, Thangadurai V (2012) J Phys Chem C 116:20154–20162

    Article  CAS  Google Scholar 

  14. Allen JL, Wolfenstine J, Rangasamy E, Sakamoto J (2012) J Power Sources 206:315–319

    Article  CAS  Google Scholar 

  15. Huang M, Dumon A, Nan CW (2012) Electrochem Comm 21:62–64

    Article  CAS  Google Scholar 

  16. Wolfenstine J, Ratchford J, Rangasamy E, Sakamoto J, Allen JL (2012) Mater Chem Phys 134:571–575

    Article  CAS  Google Scholar 

  17. Kumazaki S, Iriyama Y, Kim KH, Murugan R, Tanabe K, Yamamoto K, Hirayama T, Ogumi Z (2011) Electrochem Comm 13:509–512

    Article  CAS  Google Scholar 

  18. Murugan R, Ramakumar S, Janani N (2011) Electrochem Comm 13:1373–1375

    Article  CAS  Google Scholar 

  19. El Shinawi H, Janek J (2013) J Power Sources 225:13–19

    Article  Google Scholar 

  20. Shannon RD (1976) Acta Cryst A32:751–766

    Article  CAS  Google Scholar 

  21. Truong L (2013) Tailoring Li-Stuffed Garnet-Type Electrolytes for Energy Conversion and Storage. MSc Thesis, University of Calgary

  22. Thangadurai V, Weppner W (2005) J Am Cera Soc 88:411–418

    Article  CAS  Google Scholar 

  23. Toby BH (2001) J Appl Crystallogr 34:210–213

    Article  CAS  Google Scholar 

  24. McCusker LB, Von Dreele RB, Cox DE, Louër D, Scardi P (1999) J Appl Crystallogr 32:36–50

    Article  CAS  Google Scholar 

  25. Askeland DR, Fulay PP, Wright WJ (2006) The Science & Engineering of Materials, 6th edn. Stamford, Cengage Learning

    Google Scholar 

  26. Murugan R, Weppner W, Schmid-Beurmann P, Thangadurai V (2007) Mater Sci Eng B 143:14–20

    Article  CAS  Google Scholar 

  27. Gao YX, Wang XP, Wang WG, Zhuang Z, Zhang DM, Fang QF (2010) Solid State Ion 181:1415–1419

    Article  CAS  Google Scholar 

  28. Murugan R, Weppner W, Schmid-Beurmann P, Thangadurai V (2008) Mater Res Bull 43:2579–2591

    Article  CAS  Google Scholar 

  29. Cussen EJ, Yip TWS (2007) J Solid State Chem 180:1832–1839

    Article  CAS  Google Scholar 

  30. Thangadurai V, Weppner W (2006) J Solid State Chem 179:974–984

    Article  CAS  Google Scholar 

  31. Peng H, Wu Q, Xiao L (2013) J Sol–Gel Sci Technol 66:175–179

    Article  CAS  Google Scholar 

  32. Narayanan S, Thangadurai V (2011) J Power Sources 196:8085–8090

    Article  CAS  Google Scholar 

  33. Gao YX, Wang XP, Wang WG, Fang QF (2010) Solid State Ion 181:33–36

    Article  CAS  Google Scholar 

  34. Kotobuki M, Kanamura K (2013) Ceram Interfaces 39:6481–6487

    Article  CAS  Google Scholar 

  35. Young RA (ed) (2002) The Rietveld method. Oxford University Press, UK

  36. Stramare S, Thangadurai V, Weppner W (2003) Chem Mater 15:3974–3990

    Article  CAS  Google Scholar 

  37. Irvine JTS, Sinclair DC, West AR (1990) Adv Mater 2:132–138

    Article  CAS  Google Scholar 

  38. Murugan R, Thangadurai V, Weppner W (2007) Ionics 13:195–203

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The Natural Sciences and Engineering Research Council of Canada (NSERC) through a Discovery Grants supported this research. Wang Hay Kan thanks the Alberta Innovates–Technology Futures (AITF) for graduate scholarship. We also thank the Canada Foundation for Innovation (CFI) for support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Venkataraman Thangadurai.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kan, W.H., Truong, L. & Thangadurai, V. Effect of V-doping on the structure and conductivity of garnet-type Li5La3Nb2O12 . Ionics 21, 373–379 (2015). https://doi.org/10.1007/s11581-014-1194-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-014-1194-0

Keywords

Navigation