Skip to main content
Log in

Influence of metals on the structural, vibrational, and electrical properties of lithium nickel phosphate

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

LiNi1 − x M x PO4 (M = Zn, Al and x = 0, 0.05, 0.10, 0.15, and 0.20) was synthesized by classical solid-state reaction method. The reaction temperature is determined by thermogravimetric analysis. X-ray diffraction patterns show that an impurity peak is absorbed for Al3+-doped samples but not in the case of Zn2+-doped samples. Laser Raman studies confirm that phase pure LiNiPO4 is formed and the dopant is entered into the host lattice. Impedance spectroscopy is used to study the ion dynamics of both doped and undoped systems. Higher DC conductivity value is observed for LiNi0.85Zn0.15PO4 and LiNi0.925Al0.05PO4 compared with pristine LiNiPO4. The temperature-dependent DC conductivity and the frequency-dependent dielectric loss maxima are found to obey the Arrhenius law of conduction. In the modulus analysis, the stretching exponent β is found to be temperature independent. The scaling behavior of the imaginary part of the electric modulus suggests that the relaxation mechanism is independent of temperatures. Electrochemical impedance spectroscopy (EIS) studies also show that electrical conductivity is increased upon Zn2+ and Al3+ doping.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Wolfenstine J, Allen JL (2004) LiNiPO4–LiCoPO4 solid solutions as cathodes. J Power Sources 136:150–153

    Article  CAS  Google Scholar 

  2. Choi ES, Kim DH, Woo CH, Choi CH, Kim J (2010) Synthesis and electrochemical properties of LiFePO4/carbon nanocomposites in polyol medium. J Nanosci Nanotechnol 10:3416–3419

    Article  CAS  Google Scholar 

  3. Li HH, Jin J, Wei JP, Zhou Z, Yan J (2009) Fast synthesis of core-shell LiCoPO4/C nanocomposite via microwave heating and its electrochemical Li intercalation performances. Electrochem Commun 11:95–98

    Article  CAS  Google Scholar 

  4. Deniard P, Dulac AM, Rocquefelte X, Grigorova V, Lebacq O, Pasturel A, Jobic S (2004) High potential positive materials for lithium-ion batteries: transition metal phosphates. J Phys Chem Solids 65:229–233

    Article  CAS  Google Scholar 

  5. Julien CM, Mauger A, Zaghib K, Veillette R, Groult H (2012) Structural and electronic properties of the LiNiPO4 orthophosphate. Ionics 18:625–633

    Article  CAS  Google Scholar 

  6. Wolfenstine J, Read J, Allen JL (2007) Effect of carbon on the electronic conductivity and discharge capacity LiCoPO4. J Power Sources 163:1070–1073

    Article  CAS  Google Scholar 

  7. Satya Kishore MVVM, Varadaraju UV (2005) Influence of isovalent ion substitution on the electrochemical performance of LiCoPO4. Mater Res Bull 40:1705–1712

    Article  Google Scholar 

  8. Chung SY, Jason Bloking T, Chiang YM (2002) Electrically conducting phosphor-olivines as lithium storage electrodes. Nat Mater 1:123–128

    Article  CAS  Google Scholar 

  9. Subramanya Herle P, Ellis B, Coombs N, Nazar LF (2004) Nano-network electronic conduction in iron and nickel olivine phosphates. Nat Mater 3:147–152

    Article  Google Scholar 

  10. Ou X, Liang G, Wang L, Xu S, Zhao X (2008) Effects of magnesium doping on electronic conductivity and electrochemical properties of LiFePO4 prepared via hydrothermal route. J Power Sources 184:543–547

    Article  CAS  Google Scholar 

  11. Heo JB, Lee SB, Cho SH, Kim J, Park SH, Lee YS (2009) Synthesis and electrochemical characterizations of dual doped Li1.05Fe0.997Cu0.003PO4. Mater Lett 63:581–583

    Article  CAS  Google Scholar 

  12. Vijayan L, Cheruku R, Govindaraj G (2014) Electrical, optical and magnetic investigations on LiNiPO4 based olivines synthesized by solution combustion technique. Mater Res Bull 50:341–347

    Article  CAS  Google Scholar 

  13. Liu H, Cao Q, Fu LJ, Li C (2006) Doping effects of zinc on LiFePO4 cathode material for lithium ion batteries. Electrochem Commun 8:1553–1557

    Article  CAS  Google Scholar 

  14. Ni JF, Zhou HH, Chen JT, Zhang XX (2005) LiFePO4 doped with ions prepared by co-precipitation method. Mater Lett 59:2361–2365

    Article  CAS  Google Scholar 

  15. Fang H, Yi H, Hu C, Yang B, Yao Y, Ma W, Dai Y (2012) Effect of Zn doping on the performance of LiMnPO4 cathode for lithium ion batteries. Electrochim Acta 71:266–269

    Article  CAS  Google Scholar 

  16. Shenouda A, Liu HK (2009) Studies on electrochemical behaviour of zinc-doped LiFePO4 for lithium battery positive electrode. J Alloys Compd 477:498–503

    Article  CAS  Google Scholar 

  17. Karthickprabhu S, Hirankumar G, Maheswaran A, Sanjeeviraja C, Daries Bella RS (2012) Structural and conductivity studies on lanthanum doped LiNiPO4 prepared by polyol method, 13th Asian Conference on Solid State Ionics. pp 27–36

  18. Fergus JW (2010) Recent developments in cathode materials for lithium ion batteries. J Power Sources 195:939–954

    Article  CAS  Google Scholar 

  19. Yang MR, Ke WH (2008) The doping effect on the electrochemical properties of LiFe0.95M0.05PO4 (M = Mg2+, Ni2+, Al3+ and V3+) as cathode materials for lithium-ion cells. J Electrochem Soc 155:729–732

    Article  Google Scholar 

  20. Anantha PS, Hariharan K (2005) Ac conductivity analysis and dielectric relaxation behaviour of NaNO3–Al2O3 composites. Mater Sci Eng B 121:12–19

    Article  Google Scholar 

  21. Hannachi N, Chaabane I, Guidara K, Bulou A, Hlel F (2010) AC electrical properties and dielectric relaxation of [N(C3H7)4]2Cd2Cl6, single crystal. Mater Sci Eng B 172:24–32

    Article  CAS  Google Scholar 

  22. Okutan M, Senturk E (2008) β Dielectric relaxation mode in side-chain liquid crystalline polymer film. J Non-Cryst Solids 354(2008):1526–1530

    Article  CAS  Google Scholar 

  23. Wang Y, Yang Y, Hu X, Yang Y, Shao H (2009) Electrochemical performance of Ru-doped LiFePO4/C cathode material for lithium-ion batteries. J Alloys Compd 481:590–594

    Article  CAS  Google Scholar 

  24. Julien C M, Jozwiak P P, Garbarczyk J Proceedings of the international workshop “advanced techniques for energy sources investigation and testing” 4–9 Sept. 2004, Sofia, Bulgaria

  25. Rajalakshmi A, Sanjeeviraja C, Nithya V D, Lee Y S, Karthikeyan K, Kalai Selvan R Physicochemical properties of V5+ doped LiCoPO4 as cathode materials for Li-ion batteries. J Sol-Gel Sci Technol. doi:10.1007/s10971-012-2952-y

  26. Karthickprabhu S, Hirankumar G, Maheswaran A, Sanjeeviraja C, Daries Bella RS (2013) Structural and conductivity studies on LiNiPO4 synthesized by the polyol method. J Alloys Compd 548:65–69

    Article  CAS  Google Scholar 

  27. Kumar NS, Dutta A, Prasad S, Sinha TP (2010) Dielectric relaxation of complex perovskite Sm(Ni1/2Zr1/2)O3. Physica B 405:4413–4417

    Article  CAS  Google Scholar 

  28. Ouestali A, Hlel F, Guidara K, Gargouri M (2010) AC conductivity analysis and dielectric relaxation behavior of [N (C3H7)4]2 Cu2Cl6. J Alloys Compd 492:508–514

    Article  Google Scholar 

  29. Macedo PB, Mognihan CT, Bose R (1972) Role of ionic diffusion in vitreous ionic conductor. Phys Chem Glasses 13:171–179

    CAS  Google Scholar 

  30. Mahato DK, Dutta A, Sinha TP (2011) Dielectric relaxation and ac conductivity of double perovskite oxide Ho2ZnZrO6. Physica B 406:2703–2708

    Article  CAS  Google Scholar 

  31. Kumar P, Singh BP, Sinha TP, Singh NK (2011) AC conductivity and dielectric relaxation in Ba(Sm1/2Nb1/2)O3 ceramics. Physica B 406:139–143

    Article  CAS  Google Scholar 

  32. Shim E-G, Nam T-H, Kim J-G, Kim H-S, Moon S-I (2008) Diphenyloctyl phosphate as a flame-retardant additive in electrolyte for Li-ion batteries. J Power Sources 175:533–539

    Article  CAS  Google Scholar 

  33. Dimesso L, Spanheimer C, Jaegermann W (2013) Effect of Mg-substitution on the graphite carbon foams—LiNi1 − y Mg y PO4 composites as possible cathodes materials for 5 V applications. Mater Res Bull 48:559–565

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The financial support from BRNS, Government of India, DAE, research project 2010/20/37P/3/BRNS/1062 is gratefully acknowledged. One of the authors (S. Karthickprabhu) thanks the BRNS, DAE, Government of India, for the award of Senior Research Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Hirankumar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karthickprabhu, S., Hirankumar, G., Maheswaran, A. et al. Influence of metals on the structural, vibrational, and electrical properties of lithium nickel phosphate. Ionics 21, 345–357 (2015). https://doi.org/10.1007/s11581-014-1192-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-014-1192-2

Keywords

Navigation