Skip to main content
Log in

The effect of different concentrations of Na2SnO3 on the electrochemical behaviors of the Mg-8Li electrode

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

In this research, the effect of the different concentrations of NaSnO3 as the electrolyte additive in 0.7 mol L−1 NaCl solution on the electrochemical performances of the magnesium-8lithium (Mg-8Li) electrode are investigated by methods of potentiodynamic polarization, potentiostatic current-time, electrochemical impedance technique, and scanning electron microscopy (SEM). The corrosion resistance of the Mg-8Li electrode is improved when Na2SnO3 is added into the electrolyte solution. The potentiostatic current-time curves show that the electrochemical behaviors of the Mg-8Li electrode in the electrolyte solution containing 0.20 mmol L−1 Na2SnO3 is the best. The electrochemical impedance spectroscopy results indicate that the polarization resistance of the Mg-8Li electrode decreases in the following order with the concentrations of Na2SnO3: 0.05 mmol L−1 > 0.00 mmol L−1 > 0.30 mmol L−1 > 0.10 mmol L−1 > 0.20 mmol L−1. The scanning electron microscopy studies indicate that the electrolyte additive prevents the formation of the dense oxide film on the alloy surface and facilitates the peeling off of the oxidation products.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Hasvold O, Storkersen NJ, Forseth S, Lian T (2006) Power sources for autonomous underwater vehicles. J Power Sources 162:935–942

    Article  CAS  Google Scholar 

  2. Medeiros MG, Bessette RR, Deschenes CM, Patrissi CJ, Carreiro LG, Tucker SP, Atwater DW (2004) Magnesium-solution phase catholyte semi-fuel cell for undersea vehicles. J Power Sources 136:226–231

    Article  CAS  Google Scholar 

  3. Bessette RR, Medeiros MG, Patrissi CJ, Deschenes CM, LaFratta CN (2001) Development and characterization of a novel carbon fiber based cathode for semi-fuel cell applications. J Power Sources 96:240–244

    Article  CAS  Google Scholar 

  4. Bessette RR, Cichon JM, Dischert DW, Dow EG (1999) A study of cathode catalysis for the aluminium/hydrogen peroxide semi-fuel cell. J Power Sources 80:248–253

    Article  CAS  Google Scholar 

  5. Yang WQ, Yang SH, Sun W, Sun GQ, Xin Q (2006) Nanostructured silver catalyzed nickel foam cathode for an aluminum–hydrogen peroxide fuel cell. J Power Sources 160:1420–1424

    Article  CAS  Google Scholar 

  6. Yang WQ, Yang SH, Sun W, Sun GQ, Xin Q (2006) Nanostructured palladium-silver coated nickel foam cathode for magnesium–hydrogen peroxide fuel cells. Electrochim Acta 52:9–14

    Article  Google Scholar 

  7. Brodrecht DJ, Rusek JJ (2003) Aluminum–hydrogen peroxide fuel-cell studies. Appl Energy 74:113–124

    Article  CAS  Google Scholar 

  8. Medeiros MG, Zoski CG (1998) Investigation of a sodium hypochlorite catholyte for an aluminum aqueous battery system. J Phys Chem B 102:9908–9914

    Article  CAS  Google Scholar 

  9. Song DL, Jing XY, Wang J (2011) Microwave-assisted synthesis of lanthanum conversion coating on Mg–Li alloy and its corrosion resistance. Corros Sci 53:3651–3656

    Article  CAS  Google Scholar 

  10. Medeiros MG, Bessette RR, Deschenes CM, Atwater DW (2001) Optimization of the magnesium-solution phase catholyte semi-fuel cell for long duration testing. J Power Sources 96:236–239

    Article  CAS  Google Scholar 

  11. Medeiros MG, Dow EG (1999) Magnesium-solution phase catholyte seawater electrochemical system. J Power Sources 80:78–82

    Article  CAS  Google Scholar 

  12. Shu CZ, Wang ED, Jiang LH (2012) Studies on palladium coated titanium foams cathode for Mg–H2O2 fuel cells. J Power Sources 208:159–164

    Article  CAS  Google Scholar 

  13. Dow EG, Bessette RR, Medeiros MG, Meunier H, Seebach GL, VanZee J, Marsh-Orndorff C (1997) Enhanced electrochemical performance in the development of the aluminum/hydrogen peroxide semi-fuel cell. J Power Sources 65:207–212

    Article  CAS  Google Scholar 

  14. Marsh C, Munier H, Bessette R, Medeiros MG, VanZee J, Seebach G, An effective method for the reduction of H2O2. US Patent #5,296,429

  15. Li QF, Bjerrum NJ (2002) Aluminum as anode for energy storage and conversion: a review. J Power Sources 110:1–10

    Article  CAS  Google Scholar 

  16. Wang T, Zhang ML, Wu RZ (2008) Microstructure and properties of Mg–8Li–1Al–1Ce alloy. Mater Lett 62:1846–1848

    Article  CAS  Google Scholar 

  17. Lv YZ, Xu Y, Cao DX (2011) The electrochemical behaviors of Mg, Mg–Li–Al–Ce and Mg–Li–Al–Ce–Y in sodium chloride solution. J Power Sources 196:8809–8814

    Article  CAS  Google Scholar 

  18. Lv YZ, Liu M, Xu Y, Cao DX, Feng J (2013) The electrochemical behaviors of Mge-8Li-3Al-0.5Zn and Mg-8Li-3Al-1.0Zn in sodium chloride solution. J Power Sources 225:124–128

    Article  CAS  Google Scholar 

  19. Lv YZ, Liu M, Xu Y, Cao DX, Feng J, Wu RZ, Zhang ML (2013) The electrochemical behaviors of Mg-8Lie-0.5Y and Mg-8Li-1Y alloys in sodium chloride solution. J Power Sources 239:265–268

    Article  CAS  Google Scholar 

  20. Cao DX, Wu L, Sun Y, Wang GL, Lv YZ (2008) Electrochemical behavior of Mg-Li, Mg-Li-Al and Mg-Li-Al-Ce in sodium chloride solution. J Power Sources 177:624–630

    Article  CAS  Google Scholar 

  21. Wan TT, Liu ZX, Bu MZ, Wang PC (2013) Effect of surface pretreatment on corrosion resistance and bond strength of magnesium AZ31 alloy. Corros Sci 66:33–42

    Article  CAS  Google Scholar 

  22. Albert IJ, Kulandainathan MA, Ganesan M, Kapali (1989) Characterisation of different grades of commercially pure aluminium as prospective galvanic anodes in saline and alkaline battery electrolyte. J Appl Electrochem 19:547–551

    Article  CAS  Google Scholar 

  23. Doche ML, Novel-Cattin F, Durand R, Rameau JJ (1997) Characterization of different grades of aluminum anodes for aluminum/air batteries. J Power Sources 65:197–205

    Article  CAS  Google Scholar 

  24. Kapali V, Iyer SV, Balaramachandran V, Sarangapani KB, Ganesan M, Kulandainathan MA, Sheik Mideen A (1992) Studies on the best alkaline electrolyte for aluminium/air batteries. J Power Sources 39:263–269

    Article  CAS  Google Scholar 

  25. Sarangapani KB, Balaramachandran V, Kapali V, Iyer SV, Potdar MG, Rajagopalan KS (1984) Aluminium as anode in primary alkaline batteries. Influence of additives on the corrosion and anodic behaviour of 2S aluminium in alkaline citrate solution. J Appl Electrochem 14:475–480

    Article  CAS  Google Scholar 

Download references

Acknowledgement

This work was financially supported by the National Natural Science Foundation of China (21203040, 21301038, 51108111), the Natural Science Foundation of Heilongjiang Province of China (B201201).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yanzhuo Lv.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lv, Y., Wang, L., Li, Y. et al. The effect of different concentrations of Na2SnO3 on the electrochemical behaviors of the Mg-8Li electrode. Ionics 20, 1573–1578 (2014). https://doi.org/10.1007/s11581-014-1120-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-014-1120-5

Keywords

Navigation