Skip to main content
Log in

Influence of fuel and media on membraneless sodium percarbonate fuel cell

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

This paper reports the media flexibility of membraneless sodium percarbonate fuel cell (MLSPCFC) using acid/alkaline bipolar electrolyte in which the anode is in acidic media while the cathode is in alkaline media, or vice versa. Investigation of the cell operation is conducted by using formic acid as a fuel and sodium percarbonate as an oxidant for the first time under ‘acid–alkaline media’ configurations. The MLSPCFC architecture enables interchangeable operation with different media combinations. The experimental results indicate that operating under acid–alkaline media conditions significantly improves the fuel cell performance compared with all-acidic and all-alkaline conditions. The effects of flow rates and the concentrations of various species at both the anode and cathode on the cell performance are also investigated. It has been demonstrated that the laminar flow-based microfluidic membraneless fuel cell can reach a maximum power density of 25.62 mW cm−2 with a fuel mixture flow rate of 0.3 mL min−1 at room temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Carrette L, Friedrich KA, Stimming U (2000) Fuel cells: principles, types, fuels, and applications. ChemPhysChem 4:162–193. doi:10.1002/1439-7641(20001215)1:4<162::AID-CPHC162>3.0.CO;2-Z

  2. Eikerling M, Kornyshev AA, Kuznetsov AM, Ulstrup J, Walbran S (2001) Mechanisms of proton conductance in polymer electrolyte membranes. J Phys Chem B 105:3646–3662. doi:10.1021/jp003182s

    Article  CAS  Google Scholar 

  3. Choban ER, Markoski LJ, Wieckowski A, Kenis PJA (2004) Microfluidic fuel cell based on laminar flow. J Power Sources 128:54–60. doi:10.1016/j.jpowsour.2003.11.052

    Article  CAS  Google Scholar 

  4. Jayashree RS, Gancs L, Choban ER, Primak A, Natarajan D, Markoski LJ, Kenis PJA (2005) Air-breathing laminar flow-based microfluidic fuel cell. J Am Chem Soc 127:16758. doi:10.1021/ja054599k

    Article  CAS  Google Scholar 

  5. Cohen JL, Westly DA, Pechenik A, Abruna HD (2005) Fabrication and preliminary testing of a planar membraneless microchannel fuel cell. J Power Sources 139:96–105. doi:10.1016/j.jpowsour.2004.06.072

    Article  CAS  Google Scholar 

  6. Bazylak A, Sinton D, Djilali N (2005) Improved fuel utilization in microfluidic fuel cells: a computational study. J Power Sources 143:57–66. doi:10.1016/j.jpowsour.2004.11.029

    Article  CAS  Google Scholar 

  7. Weber M, Wang JT, Wasmus S, Savinell RF (1996) Formic acid oxidation in a polymer electrolyte fuel cell: a real‐time mass‐spectrometry study. J Electrochem Soc 143:158–160. doi:10.1149/1.1836961

    Article  Google Scholar 

  8. Rice C, Ha S, Masel RI, Waszczuk P, Wieckowski A, Barnard T (2002) Direct formic acid fuel cells. J Power Sources 111:83–89. doi:10.1016/S0378-7753(02)00271-9

    Article  CAS  Google Scholar 

  9. Lu GQ, Crown A, Wieckowski A (1999) Formic acid decomposition on polycrystalline platinum and palladized platinum electrodes. J Phys Chem 103:9700–9711. doi:10.1021/jp992297x

    Article  CAS  Google Scholar 

  10. Cotton FA, Wilkinson G (1988) Advanced inorganic chemistry. Wiley Interscience, New York, p 812

    Google Scholar 

  11. Karunakaran C, Kamalam R (2002) Structure − reactivity correlation of anilines in acetic acid. J Org Chem 67:1118–1124. doi:10.1021/jo0158433

    Article  CAS  Google Scholar 

  12. Gowdhamamoorthi M, Arun A, Kiruthika S, Muthukumaran B (2013) Enhanced performance of membraneless fuel cells. Int J Chem Tech Res 5:1143–1151

    CAS  Google Scholar 

  13. Gowdhamamoorthi M, Arun A, Kiruthika S, Muthukumaran B (2013) Enhanced performance of membraneless sodium percarbonate fuel cells. J Mater, Article ID 548026, (Volume 2013), 7 pages. doi: 10.1155/2013/548026

  14. Arun A, Gowdhamamoorthi M, Kiruthika S, Muthukumaran B (2013) Electrocatalyzed oxidation of methanol on carbon supported platinum electrode in membraneless sodium percarbonate fuel cells (MLSPCFC). Int J Chem Tech Res 5:1152–1161

    CAS  Google Scholar 

  15. Qian W, Wilkinson DP, Shen J, Wang H, Zhang JJ (2006) Architecture for portable direct liquid fuel cells. J Power Sources 154:202–213. doi:10.1016/j.jpowsour.2005.12.019

    Article  CAS  Google Scholar 

  16. Pistoia G (2005) Batteries for portable devices, Elsevier, p 79

  17. Lu GQ, Wang CY, Yen TJ, Zhang X (2004) Development and characterization of a silicon-based micro direct methanol fuel cell. Electrochim Acta 49:821–828. doi:10.1016/j.electacta.2003.09.036

    Article  CAS  Google Scholar 

  18. Kelley SC, Deluga GA, Smyrl WH (2000) A miniature methanol/air polymer electrolyte fuel cell. Electrochem Solid-State Lett 3:407–409. doi:10.1149/1.1391161

    Article  CAS  Google Scholar 

  19. Yen T, Fang N, Zhang X, Lu GQ, Wang CY (2003) A micro methanol fuel cell operating at near room temperature. Appl Phys Lett 83:4056. doi:10.1063/1.1625429

    Article  CAS  Google Scholar 

  20. Motokawa S, Mohamedi M, Momma T, Shoji S, Osaka T (2004) MEMS-based design and fabrication of a new concept micro direct methanol fuel cell (μ-DMFC). Electrochem Commun 6:562–565. doi:10.1016/j.elecom.2004.04.007

    Article  CAS  Google Scholar 

  21. Choban ER, Spendelow JS, Gancs L, Wieckowski A, Kenis PJA (2005) Membraneless laminar flow-based micro fuel cells operating in alkaline, acidic, and acidic/alkaline media. Electrochim Acta 50:5390–5398. doi:10.1016/j.electacta.2005.03.019

    Article  CAS  Google Scholar 

  22. Ayato Y, Okada T, Yamazaki Y (2003) Characterization of bipolar ion exchange membrane for polymer electrolyte fuel cells. Electrochemistry 71:313–317, Tokyo, Jpn

    CAS  Google Scholar 

  23. Choban ER, Waszczuk P, Markoski LJ, Wieckowski A, Kenis PJA (April 2003) Membraneless fuel cell based on laminar flow. Fuel Cell 2003-1728:261-265. doi:10.1115/FUELCELL2003-1728

    Google Scholar 

  24. Choban ER, Markoski LJ, Stoltzfus J, Moore JS, Kenis PJA (June 2002) Power sources proceedings. Cherry Hill, NJ, 40:317-320

  25. Spendelow J, Lu GQ, Kenis PJA, Wieckowski A (2004) Electrooxidation of adsorbed CO on Pt(1 1 1) and Pt(1 1 1)/Ru in alkaline media and comparison with results from acidic media. J Electroanal Chem 568:215–224. doi:10.1016/j.jelechem.2004.01.018

    Article  CAS  Google Scholar 

  26. McLean GF, Niet T, Prince-Richard S, Djilali N (2002) An assessment of alkaline fuel cell technology. Int J Hydrog Energy 27:507–526. doi:10.1016/S0360-3199(01)00181-1

    Article  CAS  Google Scholar 

  27. Iwasita T (2002) Electrocatalysis of methanol oxidation. Electrochim Acta 47:3663–3674. doi:10.1016/S0013-4686(02)00336-5

    Article  CAS  Google Scholar 

  28. Lide (ed) DR (2005) CRC Handbook of Chemistry and Physics, 85th edn. CRC Press LCC, MARC Records Transmitter System

  29. Yu EH, Scott K (2004) Development of direct methanol alkaline fuel cells using anion exchange membranes. J Power Sources 137:248–256. doi:10.1016/j.jpowsour.2004.06.004

    Article  CAS  Google Scholar 

  30. Park HB, Lee KH, Sung HJ (2013) Performance of H-shaped membraneless micro fuel cells. J Power Sources 226:266–271. doi:10.1016/j.jpowsour.2012.11.003

    Article  CAS  Google Scholar 

  31. Sung W, Choi JW (2007) A membraneless microscale fuel cell using non-noble catalysts in alkaline solution. J Power Sources 172:198–208. doi:10.1016/j.jpowsour.2007.07.012

    Article  CAS  Google Scholar 

  32. Kjeang E, McKechnie J, Sinton D, Djilali N (2007) Planar and three-dimensional microfluidic fuel cell architectures based on graphite rod electrodes J Power Sourc, 168:379-390. doi:10.1016/j.jpowsour.2007.02.087 DOI:10.1016/j.jpowsour.2007.02.087#doilink

Download references

Acknowledgments

The financial support for this research from University Grants Commission (UGC), New Delhi, India, through a Major Research Project 42-325/2013 (SR) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Muthukumaran.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ponmani, K., Durga, S., Gowdhamamoorthi, M. et al. Influence of fuel and media on membraneless sodium percarbonate fuel cell. Ionics 20, 1579–1589 (2014). https://doi.org/10.1007/s11581-014-1118-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-014-1118-z

Keywords

Navigation