Skip to main content
Log in

Highly active Pd/WO3-CNTs catalysts for formic acid electrooxidation and study of the kinetics

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

The new Pd/WO3-CNTs catalysts are prepared for formic acid electrooxidation in direct formic acid fuel cells (DFAFCs). According to XRD, TEM, and HRTEM results, WO3 particles are covered or overlapped with Pd particles, which have a uniform and narrow size distribution due to the highly dispersion of WO3-CNTs. The electrochemical results show significantly enhanced electrocatalytic performances for formic acid oxidation on Pd/WO3-CNTs catalysts, especially its dramatically improved stability and excellent tolerance to CO poisoning, which is mainly ascribed to the interaction between Pd and WO3. Therefore, Pd/WO3-CNTs catalysts show the great potential as less expensive and more efficient electrocatalyst for DFAFCs. Additionally, the kinetic parameters such as the charge transfer parameter and the diffusion coefficient of formic acid electrooxidation on 20 %Pd/20 %WO3-CNTs were obtained.

The new Pd/WO3-CNTs catalysts are prepared and studied in the oxidation of formic acid, and the significantly enhanced electrocatalytic performances, especially its dramatically improved stability and excellent tolerance to CO poisoning show great potential as less expensive and more efficient electrocatalyst for the direct formic acid fuel cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Rice C, Ha S, Masel RI, Wieckowski A (2003) J Power Sources 115:229

    Article  CAS  Google Scholar 

  2. Ha S, Larsen R, Zhu Y, Masel RI (2004) Fuel Cells 4:337

    Article  CAS  Google Scholar 

  3. An H, Cui H, Zhou DD, Tao DJ, Li BJ, Zhai JP, Li Q (2013) Electrochim Acta 92:176

    Article  CAS  Google Scholar 

  4. Jin YX, Ma CA, Shi MQ, Chu YQ, Xu YH, Huang T, Huang Q, Miao YW (2012) Int J Electrochem Sci 7:3399

    CAS  Google Scholar 

  5. Babu PK, Kim HS, Chung JH, Oldfield E, Wieckowski A (2004) J Phys Chem B 108:20228

    Article  CAS  Google Scholar 

  6. Nassra ABAA, Quetschkea A, Koslowskia E, Brona M (2013) Electrochim Acta 102:202

    Article  Google Scholar 

  7. Liu ZL, Zhang XH (2009) Electrochem Commun 11:1667

    Article  CAS  Google Scholar 

  8. Morales-Acosta D, Morales-Acosta MD, Godinez LA, Álvarez-Contreras L, Duron-Torres SM, Ledesma-García J, Arriaga LG (2011) J Power Sources 196:9270

    Article  CAS  Google Scholar 

  9. Li RS, Hao H, Cai WB, Huang T, Yu AS (2010) Electrochem Commun 12:901

    Article  CAS  Google Scholar 

  10. Zhou DD, Ding L, Cui H, An H, Zhai JP, Li Q (2013) J Power Sources 222:510

    Article  CAS  Google Scholar 

  11. Yang GX, Chen Y, Zhou YM, Tang YW, Lu TH (2010) Electrochem Commun 12:492

    Article  CAS  Google Scholar 

  12. Wei HG, Yan XR, Wang Q, Wu SJ, Mao YB, Luo ZP, Chen HR, Sun LY, Wei SY, Guo ZH (2013) Energy Environ Focus 2:112

    Article  Google Scholar 

  13. Wei HG, Yan XR, Wu SJ, Luo ZP, Wei SY, Guo ZH (2012) J Phys Chem C 116:25052

    Article  CAS  Google Scholar 

  14. Zhu JH, Wei SY, Zhang L, Mao YB, Ryu J, Karki AB, Young DP, Guo ZH (2011) J Mater Chem 21:342

    Article  CAS  Google Scholar 

  15. Zhu JH, Wei SY, Zhang L, Mao YB, Ryu J, Mavinakuli P, Karki AB, Young DP, Guo ZH (2010) J Phys Chem C 114:16335

    Article  CAS  Google Scholar 

  16. Zhu JH, Wei SY, Alexander MJ, Dang TD, Ho TC, Guo ZH (2010) Adv Funct Mater 18:3076

    Article  Google Scholar 

  17. Jayaraman S, Jaramillo TF, Baeck SH, McFarland EW (2005) J Phys Chem B 109:22958

    Article  CAS  Google Scholar 

  18. Barczuk PJ, Tsuchiya H, Macak JM, Schmuki P, Szymanska D, Makowski O, Miecznikowski K, Kulesza PJ (2006) Electrochem Solid-State Lett 9:E13

    Article  CAS  Google Scholar 

  19. Chen KY, Shen PK, Tseung ACC (1995) J Electrochem Soc 142:L54

    Article  CAS  Google Scholar 

  20. Shen PK, Chen KY, Tseung ACC (1995) J Electroanal Chem 389:223

    Article  Google Scholar 

  21. Barczuk PJ, Miecznikowski K, Kulesza PJ (2007) J Electroanal Chem 600:80

    Article  CAS  Google Scholar 

  22. Zhang ZH, Huang YJ, Ge JJ, Liu CP, Lu TH, Xing W (2008) Electrochem Commun 10:1113

    Article  CAS  Google Scholar 

  23. Rutkowska IA, Marks D, Perruchot C, Jouini M, Kulesza PJ (2013) Colloids Surf A Physicochem Eng Asp 439:200

    Article  CAS  Google Scholar 

  24. Kulesza PJ, Faulkner LR (1988) J Electroanal Chem 248:305

    Article  CAS  Google Scholar 

  25. Kulesza PJ, Faulkner LR (1989) J Electroanal Chem 259:81

    Article  CAS  Google Scholar 

  26. Kulesza PJ, Faulkner LR (1989) J Electrochem Soc 136:707

    Article  CAS  Google Scholar 

  27. Kulesza PJ, Faulkner LR (1988) J Am Chem Soc 110:4905

    Article  CAS  Google Scholar 

  28. Kim H, Moon SH (2011) Carbon 49:1491

    Article  CAS  Google Scholar 

  29. Lidorikis E, Ferrari AC (2009) ACS Nano 3:1238

    Article  CAS  Google Scholar 

  30. Zhu LF, She JC, Luo JY, Deng SZ, Chen J, Xu NS (2010) J Phys Chem C 114:15504

    Article  CAS  Google Scholar 

  31. Zhang SX, Qing M, Zhang H, Tian YN (2009) Electrochem Commun 11:2249

    Article  CAS  Google Scholar 

  32. Chen W, Kim J, Sun SH, Chen SW (2007) Langmuir 23:11303

    Article  CAS  Google Scholar 

  33. Wang X, Tang Y, Gao Y, Lu T (2008) J Power Sources 175:784

    Article  CAS  Google Scholar 

  34. Tu DD, Wu B, Wang BX, Deng C, Gao Y (2011) Appl Catal B Environ 103:163

    Article  Google Scholar 

  35. Zhang ZG, Zhou XC, Liu CP, Xing W (2008) Electrochem Commun 10:131

    Article  CAS  Google Scholar 

  36. Wen WJ, Li CY, Li WP, Tian Y (2013) Electrochim Acta 109:201

    Article  CAS  Google Scholar 

  37. Wang R, Liao S, Ji S (2008) J Power Sources 180:205

    Article  CAS  Google Scholar 

  38. Liu Y, Wang LW, Wang G, Deng C, Wu B, Gao Y (2010) J Phys Chem C 114:21417

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the International Science and Technology Cooperation Program of China (no. 2010DFB63680), the National Natural Science Foundation of China (nos. 21376220 and 21106133), Zhejiang Provincial Natural Science Foundation of China (no. LQ12B03003), Science and Technology Plan Project of Zhejiang Province (no. 2012C37028) and Taizhou College Students' Research Projects (no.13XS27).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chun’an Ma.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ma, C., Jin, Y., Shi, M. et al. Highly active Pd/WO3-CNTs catalysts for formic acid electrooxidation and study of the kinetics. Ionics 20, 1419–1426 (2014). https://doi.org/10.1007/s11581-014-1100-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-014-1100-9

Keywords

Navigation