Skip to main content
Log in

Enhanced electrochemical performance of lithium vanadium phosphate as cathode by LiBOB/LiTFSI with additive in EC/EMC

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

A series of Li3V2(PO4)3/C (LVP/C) samples with monoclinic structure indexed to P21/n space group were synthesized using V2O3 as vanadium source by solid state reaction method by different sintering temperatures. It was found that the LVP/C sintered at 750 °C with a carbon content 3 wt.% was the optimum condition for this synthesis. The structural, morphological, superficial, and textural properties of LVP/C were characterized by XRD, SEM, TEM, and XPS. The electrochemical performance was evaluated by galvanostatic charge–discharge cycling using new high voltage electrolyte. The optimized cell delivered an initial discharge capacity of 187 mAh g−1 in the higher cut-off voltage of 3.0–4.8 V vs. Li+/Li0 at 0.2 C rate, with a capacity retention of 88 %, 89 %, and 61 % after 50 cycles discharging at 1 C, 2 C, and 4 C, respectively. The capacity can be almost recovered at 0.5 C after long cycles. The excellent stability is contributed to the new high-voltage electrolyte.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. (1994) Sony lithium ion battery performance summary JEC Batt News Letter 2:31

  2. Nagamura T, Tazawa K (1990) Prog Batteries Sol Cells 9:209

    Google Scholar 

  3. Reimers JN, Dahn JR (1992) J Electrochem Soc 139:2091–2097

    Article  CAS  Google Scholar 

  4. Alcantara R, Lavela P, Tirado JL, Zhecheva E, Stoyanova R (1999) J Solid State Electrochem 3:121–134

    Article  CAS  Google Scholar 

  5. Amine K, Chen CH, Liu J, Hammond M, Jansen A, Dees D, Bloom I, Vissers D, Henriksen G (2001) J Power Sources 97–98:684–687

    Article  Google Scholar 

  6. Andersson AM, Abraham DP, Haasch R, Maclaren S, Liu J, Amine K (2002) J Electrochem Soc 149:A1358–A1369

    Article  CAS  Google Scholar 

  7. Chen QQ, Zhang TT, Qiao XC, Li DQ, Yang JW (2013) J Power Sources 234:197–200

    Article  CAS  Google Scholar 

  8. Chen YS, Zhang D, Bian XF, Bie XF, Wang CZ, Du F, Jang Myongsu, Chen G, Wei YJ (2012) Electrochim Acta 79:95–101

    Article  CAS  Google Scholar 

  9. Hao WJ, Zhan HH, Yu J (2012) Mater Lett 83:121–123

    Article  CAS  Google Scholar 

  10. Zhang XP, Guo HJ, Li XH, Wang ZX, Wu L (2012) Electrochim Acta 64:65–70

    Article  CAS  Google Scholar 

  11. Fei LF, Lu W, Sun L, Wang JP, Wei JP, Chan Helen LW, Wang Y (2013) RSC Adv 3:1297–1310

    Article  CAS  Google Scholar 

  12. Zhu JF, Yang RS, Wu KL (2013) Ionics 19:577–580

    Article  CAS  Google Scholar 

  13. Sato M, Ohkawa H, Yoshida K, Saito M, Uematsu K, Toda K (2000) Solid State Ionics 135:137–142

    Article  CAS  Google Scholar 

  14. Huang H, Faulkner T, Barker J, Saidi MY (2009) J Power Sources 189:748–751

    Article  CAS  Google Scholar 

  15. Chen Z, Dai C, Wu G, Nelson M, Hu X, Zhang R, Liu J, Xia J (2010) Electrochim Acta 55:8595–8599

    Article  CAS  Google Scholar 

  16. Gaubicher J, Wurm C, Goward G, Masquelier C, Nazar L (2000) Chem Mater 12:3240–3242

    Article  CAS  Google Scholar 

  17. Yin SC, Grondey H, Strobel P, Huang H, Nazar LF (2003) J Am Chem Soc 125:326–327

    Article  CAS  Google Scholar 

  18. Yin SC, Grondey H, Strobel P, Anne M, Nazar LF (2003) J Am Chem Soc 125:10402–10411

    Article  CAS  Google Scholar 

  19. Gao HY, Jiao LF, Peng WX, Liu G, Yang JQ, Zhao QQ, Qi Z, Si YC, Wang YJ, Yuan HT (2011) Electrochim Acta 56:9961–9967

    Article  CAS  Google Scholar 

  20. Qiao YQ, Wang XL, Xiang JY, Zhang D, Liu WL, Tu JP (2011) Electrochim Acta 56:2269–2275

    Article  CAS  Google Scholar 

  21. Liu H, Cao Q, Fu LJ, Li C, Wu YP, Wu HQ (2006) Electrochem Commun 8:1553–1557

    Article  CAS  Google Scholar 

  22. Wang D, Li H, Shi S, Huang X, Chen L (2005) Electrochim Acta 50:2955–2958

    Article  CAS  Google Scholar 

  23. Fu P, Zhao YM, Dong YZ, An XN, Shen GP (2006) J Power Sources 162:651–657

    Article  CAS  Google Scholar 

  24. Liu H, Bi S, Wen G, Teng X, Gao P, Ni Z, Zhu Y, Zhang F (2012) J Alloys Compd 543:99–104

    Article  CAS  Google Scholar 

  25. Kuang Q, Zhao Y, An X, Liu J, Dong Y, Chen L (2010) Electrochim Acta 55:1575–1581

    Article  CAS  Google Scholar 

  26. Ren M, Zhou Z, Li Y, Gao XP, Yan J (2006) J Power Sources 162:1357–1362

    Article  CAS  Google Scholar 

  27. Chen Y, Zhao Y, An X, Liu J, Dong Y, Chen L (2009) Electrochim Acta 54:5844–5850

    Article  CAS  Google Scholar 

  28. Ai D, Liu K, Lu Z, Zou M, Zeng D, Ma J (2011) Electrochim Acta 56:2823–2827

    Article  CAS  Google Scholar 

  29. Xia Y, Zhang W, Huang H, Gan Y, Li C, Tao X (2011) Mater Sci Eng B 176:633–639

    Article  CAS  Google Scholar 

  30. Rui XH, Li C, Chen CH (2009) Electrochim Acta 54:3374–3380

    Article  CAS  Google Scholar 

  31. Belharouak I, Johnson C, Amine K (2005) Electrochem Commun 7:983–988

    Article  CAS  Google Scholar 

  32. Tang AP, Wang XY, Liu ZM (2008) Mater Lett 62:1646–1648

    Article  CAS  Google Scholar 

  33. Chen QQ, Wang JM, Tang Z, He WC, Shao HB, Zhang JQ (2007) Electrochim Acta 52:5251–5257

    Article  CAS  Google Scholar 

  34. Chang CX, Xiang JF, Shi XX, Han XY, Yuan LJ, Sun JT (2008) Electrochim Acta 53:2232–2237

    Article  CAS  Google Scholar 

  35. Pan AQ, Liu J, Zhang JG, Xu W, Cao GZ, Nie ZM, Arey BW, Liang SQ (2010) Electrochem Commun 12:1674–1677

    Article  CAS  Google Scholar 

  36. Zhu XJ, Liu YX, Geng LM, Chen LB (2008) J Power Sources 184:578–582

    Article  CAS  Google Scholar 

  37. Liu HD, Gao P, Fang JH, Yang G (2011) Chem Commun 47:9110–9112

    Article  CAS  Google Scholar 

  38. Yuan W, Yan J, Tang ZY, Sha O, Wang JM, Mao WF, Ma L (2012) J Power Sources 201:301–306

    Article  CAS  Google Scholar 

  39. Saidi MY, Barker J, Huang H (2002) Electrochem Solid State Lett 5:A149–A151

    Article  CAS  Google Scholar 

  40. Wang LY, Zhou XC, Guo YL (2010) J Power Sources 195:2844–2850

    Article  CAS  Google Scholar 

  41. Mao W, Yan J, Xie H, Tang Z, Xu Q (2013) Electrochim Acta 88:429–435

    Article  CAS  Google Scholar 

  42. Wang RH, Xiao SH, Li XH, Wang JX, Guo HJ, Zhong FX (2013) J Alloys Compd 575:268–272

    Article  CAS  Google Scholar 

  43. Wang H, Li Y, Huang C, Zhong Y, Liu S (2012) J Power Sources 208:282–287

    Article  CAS  Google Scholar 

  44. Dai CS, Wang FP, Liu JT (2008) J Inorg Chem 24:381–387

    CAS  Google Scholar 

  45. Qiao YQ, Tu JP, Wang XL, Zhang D, Xiang JY, Mai YJ (2011) J Power Sources 196:7715–7720

    Article  CAS  Google Scholar 

  46. Zheng JC, Li XH, Wang ZX, Guo HJ, Hu QY, Peng WJ (2009) J Power Sources 189:476–479

    Article  CAS  Google Scholar 

  47. Lu Y, Shi J, Guo Z, Tong Q, Huang W, Li B (2009) J Power Sources 194:786–793

    Article  CAS  Google Scholar 

  48. Wu KL, Yang JP (2013) Mater Res Bull 48:435–439

    Article  CAS  Google Scholar 

  49. Julien CM, Zaghib K, Mauger A, Massot M, Salah AA, Selmane M, Gendron F (2006) J Appl Phys 100:063511–063517

    Article  CAS  Google Scholar 

  50. Hu Y, Doeff MM, Kostecki R, Finones R (2004) J Electrochem Soc 151:A1279–A1285

    Article  CAS  Google Scholar 

  51. Doeff MM, Hu Y, McLarnon F, Kostecki R (2003) Electrochem Solid-State Lett 6:A207–A209

    Article  CAS  Google Scholar 

  52. Burba CM, Frech R (2007) Solid State Ionics 177:3445–3454

    Article  CAS  Google Scholar 

  53. Sinha NN, Munichandraiah N (2009) Appl Mater Int 1:1241–1249

    Article  CAS  Google Scholar 

  54. Dedryvére R, Maccario M, Croguennec L, Cras Le F, Delmas C, Gonbeau D (2008) Chem Mater 20:7164–7170

    Article  CAS  Google Scholar 

  55. Dedryvère R, Martinez H, Leroy S, Lemordant D, Bonhomme F, Biensan P, Gonbeau D (2007) J Power Sources 174:462–468

    Article  CAS  Google Scholar 

  56. Anthony W, Harry G, Flores G, Kim JG, Langell MA (2007) Appl Surf Sci 253:4782–4791

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the Chinese Post Doctor Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aifang Liu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, A. Enhanced electrochemical performance of lithium vanadium phosphate as cathode by LiBOB/LiTFSI with additive in EC/EMC. Ionics 20, 451–458 (2014). https://doi.org/10.1007/s11581-013-1011-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-013-1011-1

Keywords

Navigation