Skip to main content

Advertisement

Log in

Modified carbothermal synthesis and electrochemical performance of LiFePO4/C composite as cathode materials for lithium-ion batteries

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

LiFePO4/C active materials were synthesized via a modified carbothermal method, with a low raw material cost and comparatively simple synthesis process. Rheological phase technology was introduced to synthesize the precursor, which effectively decreased the calcination temperature and time. The LiFePO4/C composite synthesized at 700 °C for 12 h exhibited an optimal performance, with a specific capacity about 130 mAh g−1 at 0.2C, and 70 mAh g−1 at 20C, respectively. It also showed an excellent capacity retention ratio of 96 % after 30 times charge–discharge cycles at 20C. EIS was applied to further analyze the effect of the synthesis process parameters. The as-synthesized LiFePO4/C composite exhibited better high-rate performance as compared to the commercial LiFePO4 product, which implied that the as-synthesized LiFePO4/C composite was a promising candidate used in the batteries for applications in EVs and HEVs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Wang Q, Zhang WX, Yang Zh, Weng SY, Jin SJ (2012) Solvothermal synthesis of hierarchical LiFePO4 microflowers as cathode materials for lithium ion batteries. J Power source 196:10176–10182

    Article  Google Scholar 

  2. Sikha G, White RE, Popov BN (2005) A mathematical model for a lithium-ion battery/electrochemical capacitor hybrid system. J Electrochem Soc 152:A1682–A1693

    Article  CAS  Google Scholar 

  3. Wang K, Cai R, Yuan T, Yu X, Ran R, Shao Z (2009) Process investigation, electrochemical characterization and optimization of LiFePO4/C composite from mechanical activation using sucrose as carbon source. Electrochim Acta 54:2861–2868

    Article  CAS  Google Scholar 

  4. Padhi AK, Nanjundaswamy KS, Goodenough JB (1997) Phospho-olivines as positive-electrode materials for rechargeable lithium batteries. J Electrochem Soc 144:1188–1194

    Article  CAS  Google Scholar 

  5. Whittingham MS (2004) Lithium batteries and cathode materials. Chem Rev 104:4271–4302

    Article  CAS  Google Scholar 

  6. Chong J, Xun SD, Zheng HH, Song XY, Gao L, Ridgway P, Wang JQ, Battaglia VS (2011) A comparative study of polyacrylic acid and poly (vinylidene difluoride) binders for spherical natural graphite/LiFePO4 electrodes and cells. J Power source 196:7707–7714

    Article  CAS  Google Scholar 

  7. Maier J, Amin R (2008) Defect chemistry of LiFePO4. J Electrochem Soc 155:A339–A344

    Article  CAS  Google Scholar 

  8. Hu YS, Guo YG, Dominko R, Gaberscek M, Jamnik J (2007) Improved electrode performance of porous LiFePO4 using RuO2 as an oxidic nanoscale interconnect. Adv Mater 19:1963–1966

    Article  CAS  Google Scholar 

  9. Wu XL, Jiang LY, Gao FF, Guo YG, Wan LJ (2009) LiFePO4 nanoparticles embedded in a nanoporous carbon matrix: superior cathode material for electrochemical energy-storage devices. Adv Mater 21:2710–2714

    Article  CAS  Google Scholar 

  10. Yu F, Zhang JJ, Yang YF, Song GZ (2009) Up-scalable synthesis, structure and charge storage properties of porous microspheres of LiFePO4@C nanocomposites. J Mater Chem 19:9121–9125

    Article  CAS  Google Scholar 

  11. Sun C, Rajasekhara S, Goodenough JB, Zhou F (2011) Monodisperse porous LiFePO4 microspheres for a high power Li-ion battery cathode. J Am Chem Soc 133:2132–2135

    Article  CAS  Google Scholar 

  12. Zaghib K, Mauger A, Gendron F, Julien CM (2008) Relationship between local structure and electrochemical performance of LiFePO4 in Li-ion batteries. Ionics 14:271–278

    Article  CAS  Google Scholar 

  13. Liu AF, Hu ZH, Wen ZB, Lei L, An J (2010) LiFePO4/C with high capacity synthesized by carbothermal reduction method. Ionics 16:311–316

    Article  CAS  Google Scholar 

  14. Kim H-S, Kam D-W, Kim W-S, Koo H-J (2011) Synthesis of the LiFePO4 by a solid-state reaction using organic acids as a reducing agent. Ionics 17:293–297

    Article  CAS  Google Scholar 

  15. Fey GT-K, Lu T-L (2008) Morphological characterization of LiFePO4/C composite cathode materials synthesized via a carboxylic acid route. J Power Sources 178:807–814

    Article  CAS  Google Scholar 

  16. Choi DW, Kumta PN (2007) Surfactant based sol–gel approach to nanostructured LiFePO4 for high rate Li-ion batteries. J Power Sources 163:1064–1069

    Article  CAS  Google Scholar 

  17. Liu YY, Cao CB, Li J (2010) Enhanced electrochemical performance of carbon nanospheres-LiFePO4 composite by PEG based sol-gel synthesis. Electrochim Acta 55:3921–3926

    Article  CAS  Google Scholar 

  18. Toprakci O, Ji LW, Lin Z, Toprakci AKH, Zhang XW (2011) Fabrication and electrochemical characteristics of electrospun LiFePO4/carbon composite fibers for lithium-ion batteries. J Power Sources 196:7692–7699

    Article  CAS  Google Scholar 

  19. Kim J-K, Choi J-W, Chauhan GS, Ahn J-H, Hwang G-C, Choi J-B, Ahn H-J (2008) Enhancement of electrochemical performance of lithium iron phosphate by controlled sol–gel synthesis. Electrochim Acta 53:8258–8264

    Article  CAS  Google Scholar 

  20. Jin EM, Jin B, Jun D-K, Park K-H, Gu H-B, Kim K-W (2008) A study on the electrochemical characteristics of LiFePO4 cathode for lithium polymer batteries by hydrothermal method. J Power Sources 178:801–806

    Article  CAS  Google Scholar 

  21. Sun JT, Xie W, Yuan LJ, Zhang KL, Wang QY (1999) Preparation and luminescence properties of Tb3+-doped zinc salicylates. Mater Sci Eng B64:157–160

    Article  CAS  Google Scholar 

  22. Cao X, Zhan H, Xie J, Zhou Y (2006) Synthesis of Ag2V4O11 as a cathode material for lithium battery via a rheological phase method. Mater Lett 60:435–438

    Article  CAS  Google Scholar 

  23. He B-L, Zhou W-J, Bao S-J, Liang Y-Y, Li H-L (2007) Preparation and electrochemical properties of LiMn2O4 by the microwave-assisted rheological phase method. Electrochim Acta 52:3286–3293

    Article  CAS  Google Scholar 

  24. Yuvaraj S, Yuan L, Huei C, Tih YC (2003) Thermal decomposition of metal nitrates in air and hydrogen environments. J Phys Chem B 107:1044–1047

    Article  CAS  Google Scholar 

  25. Yu F, Zhang J, Yang Y, Song G (2009) Reaction mechanism and electrochemical performance of LiFePO4/C cathode materials synthesized by carbothermal method. Electrochim Acta 54:7389–7395

    Article  CAS  Google Scholar 

  26. Wu SH, Hsiao KM, Liu WR (2005) The preparation and characterization of olivine LiFePO4 by a solution method. J Power source 146:550–554

    Article  CAS  Google Scholar 

  27. Kadoma Y, Kim J-M, Abiko K, Ohtsuki K, Ui K, Kumagai N (2010) Optimization of electrochemical properties of LiFePO4/C prepared by an aqueous solution method using sucrose. Electrochim Acta 55:1034–1041

    Article  CAS  Google Scholar 

  28. Kim H-J, Kim J-M, Kim W-S, Koo H-J, Bae D-S, Kim H-S (2011) Synthesis of LiFePO4/C cathode materials through an ultrasonic-assisted rheological phase method. J Alloys Compd 509:5662–5666

    Article  CAS  Google Scholar 

  29. Bard AJ, Faulkner LR (2001) Electrochemical methods, 2nd edn. Wiley, Hoboken

    Google Scholar 

Download references

Acknowledgments

This work has been supported in part by National Natural Science Foundation of China (No. 50974045), the Ph. D Programs Foundation of Ministry of Education of China (No. 20092302110052) and the Natural Science Foundation of Heilongjiang Province, China (No. B200918).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dianlong Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, Q., Wang, D. & Wang, B. Modified carbothermal synthesis and electrochemical performance of LiFePO4/C composite as cathode materials for lithium-ion batteries. Ionics 19, 245–252 (2013). https://doi.org/10.1007/s11581-012-0758-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-012-0758-0

Keywords

Navigation