Skip to main content
Log in

Enhanced electrochemical performance of LiFePO4/C prepared by sol–gel synthesis with dry ball-milling

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

LiFePO4/C was prepared by a modified aqueous sol–gel route developed by incorporating an additional ball-milling step where the dry gel was milled with the additives of synthetic graphite and carbon black. The materials were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), Brunauer–Emmett–Teller (BET), transmission electron microscopy (TEM), high resolution TEM (HRTEM) and elemental analysis. Results showed that the LiFePO4/C synthesized by suitable ball-milling process had pure, fine and homogenous LiFePO4 particles. Results of cyclic voltammetry and charge/discharge plateaus demonstrated that the LiFePO4/C composite synthesized by milling for 2 h had much better electrochemical kinetics. High performances were achieved with its discharge capacities of 157 mA h g−1 at 0.1 C and 133 mA h g−1 at 1 C between 2.5 and 4.2 V (1 C = 170 mA g−1). And no obvious capacity fading was observed upon cycling. The simple and convenient synthesis route is promising for large-scale production of LiFePO4/C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Padhi AK, Nanjundaswamy KS, Masquelier C, Okada S, Goodenough JB (1997) J Electrochem Soc 144:1609

    Article  CAS  Google Scholar 

  2. Song MS, Kang YM, Kim YI, Park KS, Kwon HS (2009) Inorg Chem 48:8271

    Article  CAS  Google Scholar 

  3. Xu J, Chen G, Li X (2009) Mater Chem Phys 118:9

    Article  CAS  Google Scholar 

  4. Fey GTK, Huang KP, Kao HM, Li WH (2011) J Power Sources 196:2810

    Article  CAS  Google Scholar 

  5. Zhou Y, Gu CD, Zhou JP, Cheng LJ, Liu WL, Qiao YQ, Wang XL, Tu JP (2011) Electrochim Acta 56:5054

    Article  CAS  Google Scholar 

  6. Dimesso L, Spanheimer C, Jacke S, Jaegermann W (2011) Ionics 17:429

    Article  CAS  Google Scholar 

  7. Rho YH, Nazar LF, Perry L, Ryan D (2007) J Electrochem Soc 154:A283

    Article  CAS  Google Scholar 

  8. Lin Y, Gao MX, Zhu D, Liu YF, Pan HG (2008) J Power Sources 184:444

    Article  CAS  Google Scholar 

  9. Song GM, Wu Y, Xu Q, Liu G (2010) J Power Sources 195:3913

    Article  CAS  Google Scholar 

  10. Herle PS, Ellis B, Coombs N, Nazar LF (2004) Nat Mater 3:147

    Article  CAS  Google Scholar 

  11. Ma J, Li BH, Du HD, Xu CJ, Kang FY (2011) J Electrochem Soc 158:A26

    Article  CAS  Google Scholar 

  12. Konarova M, Taniguchi I (2010) J Power Sources 195:3661

    Article  CAS  Google Scholar 

  13. Yamada A, Chung SC, Hinokuma K (2001) J Electrochem Soc 148:A224

    Article  CAS  Google Scholar 

  14. Yamada A, Koizumi H, Nishimura SI, Sonoyama N, Kanno R, Yonemura M, Nakamura T, Kobayashi Y (2006) Nat Mater 5:357

    Article  CAS  Google Scholar 

  15. Gaberscek M, Dominko R, Jamnik J (2007) Electrochem Commun 9:2778

    Article  CAS  Google Scholar 

  16. Tsunekawa H, Tanimoto S, Marubayashi R, Fujita M, Kifune K, Sano M (2002) J Electrochem Soc 149:A1326

    Article  CAS  Google Scholar 

  17. Kim HS, Cho BW, Cho WI (2004) J Power Sources 132:235

    Article  CAS  Google Scholar 

  18. Jugovic D, Mitric M, Kuzmanovic M, Cvjeticanin N, Skapin S, Cekic B, Ivanovski V, Uskokovic D (2011) J Power Sources 196:4613

    Article  CAS  Google Scholar 

  19. Lin Y, Pan HG, Gao MX, Miao H, Li SQ, Wang Y (2008) Surf Rev Lett 15:133

    Article  CAS  Google Scholar 

  20. Choi D, Kumta PN (2007) J Power Sources 163:1064

    Article  CAS  Google Scholar 

  21. Bakenov Z, Taniguchi I (2010) Electrochem Commun 12:75

    Article  CAS  Google Scholar 

  22. Bakenov Z, Taniguchi I (2010) J Electrochem Soc 157:A430

    Article  CAS  Google Scholar 

  23. Zhang D, Cai R, Zhou YK, Shao ZP, Liao XZ, Ma ZF (2010) Electrochim Acta 55:2653

    Article  CAS  Google Scholar 

  24. Kim JK, Cheruvally G, Ahn JH, Hwang GC, Choi JB (2008) J Phys Chem Solids 69:2371

    Article  CAS  Google Scholar 

  25. Fey GTK, Chen YG, Kao HM (2009) J Power Sources 189:169

    Article  CAS  Google Scholar 

  26. Kadoma Y, Kim JM, Abiko K, Ohtsuki K, Ui K, Kumagai N (2010) Electrochim Acta 55:1034

    Article  CAS  Google Scholar 

  27. Gao MX, Lin Y, Yin YH, Liu YF, Pan HG (2010) Electrochim Acta 55:8043

    Article  CAS  Google Scholar 

  28. Prosini PP, Lisi M, Zane D, Pasquali M (2002) Solid State Ionics 148:45

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by Project of Taizhou Science and Technology Plan (102XCP07), Scientific Research Fund of Zhejiang Provincial Education Department (Y201016923).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yan Lin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lin, Y., Wu, J. & Chen, W. Enhanced electrochemical performance of LiFePO4/C prepared by sol–gel synthesis with dry ball-milling. Ionics 19, 227–234 (2013). https://doi.org/10.1007/s11581-012-0735-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-012-0735-7

Keywords

Navigation