Skip to main content
Log in

Electrochemical and impedance spectroscopy studies in H2/O2 and methanol/O2 proton exchange membrane fuel cells

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

This works report results of the structural and the electrochemical characterization of membrane electrode assemblies (MEA) for proton exchange membrane fuel cells (PEMFC) under various cell conditions using different MEA production processes. Electrochemical impedance spectroscopy (EIS) was applied “on-line” (in situ) as a tool for diagnosis concerning the cell performance. MEA with a 25-cm2 surface area were prepared using Pt/C and Pt–Ru/C commercial electrocatalysts from E-TEK and Pt–Ru/C electrocatalysts produced by the alcohol reduction process. The catalytic ink was applied directly onto the carbon cloth or, alternatively, onto the Nafion® membrane. Two carbon cloth thicknesses were tested as diffusion layers in the MEA: 0.346 mm (common) and 0.424 mm (ELAT). An increase of the electrocatalytic activity can be obtained by pH control in the alcohol reduction process, possibly due to the better particle dispersion and the smaller particle sizes observed. In addition, a slower current decay in the ohmic region was observed using the thinner carbon cloth. This can be related to a lower resistance of the gas flow through the cloth to the catalytic active layer. Different types of methanol feed were employed in the experiments: by humidification and by evaporation. The results showed that the choice of suitable methods for catalyst preparation as well as for MEA production enhance PEMFC performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Wendt H, Götz M, Linardi M (2000) Quím Nova 23:538

    Article  CAS  Google Scholar 

  2. Frey T, Linardi M (2004) Electrochim Acta 50:99

    Article  CAS  Google Scholar 

  3. Franco EG, Oliveira-Neto A, Aricó E, Linardi M (2002) J Braz Chem Soc 13:516

    Article  CAS  Google Scholar 

  4. Camara GA, Giz MJ, Paganin V, Ticianelli EA (2002) J Electroanal Chem 537:21

    Article  CAS  Google Scholar 

  5. Ren X, Zelenay P, Thomas S, Davey J, Gottesfeld S (2000) J Power Sources 86:111

    Article  CAS  Google Scholar 

  6. Heinzel A, Barragan VM (1999) J Power Sources 84:70

    Article  CAS  Google Scholar 

  7. Narayanan SR, Frank H, Jeffries-Nakamura B, Smart M, Chun W, Halpert G, Kosek J, Cropley C (1995) In: Gottesfeld S, Halpert G, Landgrebe A (eds) Proton conducting membrane fuel cells I, PV 95-23. The Electrochemical Society Proceedings Series, Pennington, NJ, p 278

  8. Lu GQ, Wang CY (2004) J Power Sources 134:33

    Article  CAS  Google Scholar 

  9. Sun X, Li R, Villers D, Dodelet JP, Désilets S (2003) Chem Phys Lett 379:99

    Article  CAS  Google Scholar 

  10. Qi Z, Kaufman A (2003) J Power Sources 113:37

    Article  CAS  Google Scholar 

  11. Bittins-Cattaneo B, Iwasita T (1987) J Electroanal Chem 238:151

    Article  CAS  Google Scholar 

  12. Frelink T, Visscher W, van Veen JAR (1994) Electrochim Acta 39:1871

    Article  CAS  Google Scholar 

  13. Zhou Z, Wang S, Zhou W, Wang G, Jiang L, Li W, Song S, Liu J, Sun G, Xin Q (2003) Chem Commun 394

  14. Franco EG, Oliveira-Neto A, Spinacé EV, Linardi M, Martz N, Mazurek M, Fuess H (2005) Mater Res 8:117

    CAS  Google Scholar 

  15. Bonnemann H, Brijoux W, Brinkmann R (1991) Angew Chem Int Ed Engl 30:1312

    Article  Google Scholar 

  16. Pileni MP (1997) Langmir 13:3266

    Article  CAS  Google Scholar 

  17. Xiong L, Manthiram A (2005) Electrochim Acta 50:2323

    Article  CAS  Google Scholar 

  18. Wang X, Hsing I-M (2002) Electrochim Acta 47:2981

    CAS  Google Scholar 

  19. Zhou W, Zhou Z, Song S, Li W, Sun G, Tsiakaras P, Xin Q (2003) Appl Catal B Environ 46:273

    Article  CAS  Google Scholar 

  20. Spinace EV, Oliveira-Neto A, Vasconcelos TRR, Linardi M (2004) J Power Sources 137:17

    CAS  Google Scholar 

  21. Oliveira-Neto A, Vasconcelos TRR, Da Silva RWRV, Linardi M, Spinace EV (2005) J Appl Electrochem 35:193

    Article  Google Scholar 

  22. Spinace EV, Oliveira-Neto A, Vasconcelos TRR, Linardi M (2003) Brazilian Patent INPI-RJ, PI0304121-2

  23. Scherrer P (1918) Nach Ges Wiss 26:98

    Google Scholar 

  24. Linardi M, Baldo WR, Bueno SAA, Saliba-Silva AM (2003) Método híbrido de spray e prensagem a quente, Patent submitted for deposit at INPI Brazil

  25. Roth C, Martz N, Fuess H (2001) Phys Chem Chem Phys 3:315

    Article  CAS  Google Scholar 

  26. Roth C, Goetz M, Fuess H (2001) J Appl Electrochem 31:793

    Article  CAS  Google Scholar 

  27. Roth C, Martz N, Fuess H (2004) J Appl Electrochem 34:345

    Article  CAS  Google Scholar 

  28. De Melo AG (2003) Personal Communication, IQ/USP São Paulo

Download references

Acknowledgment

The authors wish to thank FAPESP, CAPES, DAAD, CTPETRO/FINEP, IPEN, IPT, and University of Technology Darmstadt, for financial and technical support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonio Rodolfo dos Santos.

Rights and permissions

Reprints and permissions

About this article

Cite this article

dos Santos, A.R., Carmo, M., Oliveira-Neto, A. et al. Electrochemical and impedance spectroscopy studies in H2/O2 and methanol/O2 proton exchange membrane fuel cells. Ionics 14, 43–51 (2008). https://doi.org/10.1007/s11581-007-0133-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-007-0133-8

Keywords

Navigation