Skip to main content
Log in

On optimal partitions, individual values and cooperative games: Does a wiser agent always produce a higher value?

  • Published:
Mathematics and Financial Economics Aims and scope Submit manuscript

Abstract

We consider an optimal partition of resources (e.g. consumers) between several agents, given utility functions (“wisdoms”) for the agents and their capacities. This problem is a variant of optimal transport (Monge–Kantorovich) between two measure spaces where one of the measures is discrete (capacities) and the costs of transport are the wisdoms of the agents. We concentrate on the individual value for each agent under optimal partition and show that, counter-intuitively, this value may decrease if the agent’s wisdom is increased. Sufficient and necessary conditions for the monotonicity with respect to the wisdom functions of the individual values will be given, independently of the other agents. The sharpness of these conditions is also discussed. Motivated by the above we define a cooperative game based on optimal partition and investigate conditions for stability of the grand coalition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Ambrosio, L.: Lecture Notes on Optimal Transport Problems Mathematical Aspects of Evolving Interfaces, Lecture Notes in Mathematics, Funchal, 2000, vol. 1812. Springer, Berlin, pp. 1–52 (2000)

  2. Ambrosio, L., Gigli L.N., Savaré, G.: Gradient Flows in Metric Spaces and the Wasserstein Spaces of Probability Measures. Lectures in Mathematics, ETH Zurich, Birkhauser (2005)

  3. Brenier, Y.: Polar factorization and monotone rearrangement of vector valued functions. Arch. Rational Mech. Anal. 122, 323–351 (1993)

    Article  MathSciNet  Google Scholar 

  4. Léonard, C.: From the Schrödinger problem to the Monge–Kantorovich problem. J. Funct. Anal. 262(4), 1879–1920 (2012)

    Article  MATH  Google Scholar 

  5. Adams, S. et al: Large deviations and gradient flows. Philos. Trans. R. Soc. 371, 371, 20120341 (2013)

  6. Rachev, S.T.: The Monge-Kantorovich mass transference problem and its stochastic applications. Theory Probab. Appl. 29, 647–676 (1985)

    Article  MATH  Google Scholar 

  7. Rachev, S.T., Rüschendorf, L.R.: Mass Transportation Problems. Springer, Berlin (1998)

    MATH  Google Scholar 

  8. Gangbo, W.: The Monge mass transfer problem and its applications, Monge AmpÃre equation: applications to geometry and optimization, (Deerfield Beach, FL, 1997), 79-104, Contemp. Math., 226, Amer. Math. Soc., Providence, RI, (1999)

  9. McCann, R., Guillen, N.:Five lectures on optimal transportation: Geometry, regularity and applications, http://www.math.cmu.edu/cna/2010CNASummerSchoolFiles/lecturenotes/mccann10.pdf

  10. Villani, C.: Topics in Optimal Transportation, Grad. Stud. Math., vol. 58 (2003)

  11. Villani, C.: Optimal Transport: Old and New, Grundlehren der mathematischen Wissenschaften, (2008)

  12. Caffarelli, L.A.: The Monge–Ampere Equation and Optimal Transportation, An Elementary Review, Optimal Transportation and Applications. Springer, Berlin, pp. 1–10 (2003)

  13. Evans, L.C., Gangbo, W.: Differential equations methods for the Monge–Kantorovich mass transfer problem. Mem. Am. Math. Soc. 137(653), viii+66 (1999)

  14. Evans, L.C.: Partial differential equations and Monge-Kantorovich mass transfer. Current Developments in Mathematics, Cambridge, MA, : International Press. Boston, MA 1999, 65–126 (1997)

  15. Ma, X.N., Trudinger, N., Wang, X.J.: Regularity of potential functions of the optimal transportation problem. Arch. Rational Mech. Anal. 177, 151–183 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  16. Carlier, G.: Duality and existence for a class of mass transportation problems and economic applications. Adv. Math. Econ. 5, 1–21 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  17. Glimm, T., Oliker, V.: Optical design of single reflector systems and the Monge–Kantorovich mass transfer problem. J. Math. Sci. 117(3), 4096–4108 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  18. Carlier, G., Lachapelle, A.: A planning problem combining calculus of variations and optimal transport. Appl. Math. Optim. 63(1–9), 79–104 (2011)

    MathSciNet  MATH  Google Scholar 

  19. Rubinstein, J., Wolansky, G.: Intensity control with a free-form lens. J. Opt. Soc. Am. A 24(2), 463–469 (2007)

    Article  MathSciNet  Google Scholar 

  20. Rubinstein, J., Wolansky, G.: A weighted least action principle for dispersive waves. Ann. Phys. 316(2), 271–284 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  21. Rubner, Y., Tomasi, C., Guibas, L.: The Earth Mover’s distance as a metric for image retrieval. Int. J. Comput. Vis. 40(2), 99–121 (2000)

    Article  MATH  Google Scholar 

  22. Chiappori, P.A., McCann, R.J., Nesheim, L.P.: Hedonic price equilibria, stable matching, and optimal transport: equivalence, topology, and uniqueness. Econ. Theory 42(2), 317–354 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  23. Pentico, D.W.: Assignment problems: a golden anniversary survey. Eur. J. Oper. Res. 176(2), 774–793 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  24. Monge, G.: Mémoire sur la théorie des déblais et des remblais. In: Histoire de lÁcadémie Royale des Sciences de Paris, 666–704 (1781)

  25. Wolansky, G.: On semi-discrete Monge Kantorovich and generalized partitions. J. Optim. Theory Appl. 165(2), 359–384 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  26. Champion, T., Luigi, D.P.: On the twist condition and c-monotone transport plans. Discret. Contin. Dyn. Syst 34(4), 1339–1353 (2012)

    MathSciNet  MATH  Google Scholar 

  27. Gilles, R.P.: The Cooperative Game Theory of Networks and Hierarchies, Series C: Game Theory, Mathematical Programming and Operation Research, vol. 44. Springer, Berlin (2010)

    Book  Google Scholar 

  28. Bondareva, O.: Certain applications of the methods of linear programming to the theory of cooperative games. Probl. Kibernetiki 10, 119–139 (1963). (in Russian)

    MathSciNet  MATH  Google Scholar 

  29. Shapley, L.S.: On balanced sets and cores. Naval Res. Logist. Q. 14, 453–460 (1967)

    Article  Google Scholar 

  30. Shapley, L.S., Shapley, L.S.: Cores of convex games. Int. J. Game Theory 1, 11–26 (1971)

    Article  MathSciNet  MATH  Google Scholar 

  31. Bauschke, H.H., Combettes, P.L.: Convex Analysis and Monotone Operator Theory in Hilbert Spaces. Springer, New York (2011)

    Book  MATH  Google Scholar 

  32. Attouch, H.: Variational Convergence for Functions and Operators. Pitman, Boston (1984)

    MATH  Google Scholar 

Download references

Acknowledgments

I would like to thank H. Brezis and R. Holtzmann for his helpful suggestion which contributed to the improvement of the results. Supported by the Israel Science Foundation grant 998/15.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gershon Wolansky.

Appendix

Appendix

We prove that the function \(\vec {m}\mapsto \Sigma _{\vec {\psi }}(\vec {m})\) as defined in (10) is strictly concave on the simplex (51). To prove this we recall some basic elements form convexity theory (see, e.g. [31, 32]):

  1. (i)

    If F is a convex function on \(\mathbb R^N\) (say), then the sub gradient \(\partial F\) at point \(p\in \mathbb R^N\) is defined as follows: \(\vec {q}\in \partial F(\vec {p})\) if and only if

    $$\begin{aligned} F(\vec {p}{\prime })-F(\vec {p})\ge \vec {q}\cdot (\vec {p}{\prime }-\vec {p}) \quad \forall \vec {p}{\prime }\in \mathbb R^N. \end{aligned}$$
  2. (ii)

    The Legendre transform of F:

    $$\begin{aligned} F^{*}(\vec {q}):= \sup _{\vec {p}\in \mathbb R^N} \vec {p}\cdot \vec {q}-F(\vec {p}), \end{aligned}$$

    and \(Dom(F^{*})\subset \mathbb R^N\) is the set on which \(F^{*}<\infty \).

  3. (iii)

    The function \(F^{*}\) is convex (and closed), but \(Dom(F^{*})\) can be a proper subset of \(\mathbb R^N\) (or even an empty set).

  4. (iv)

    The subgradient of a convex function is non-empty (and convex) at any point in the proper domain of this function (i.e. at any point in which the function takes a value in \(\mathbb R\)).

  5. (v)

    Young’s inequality

    $$\begin{aligned} F(\vec {p})+F^{*}(\vec {q})\ge \vec {p}\cdot \vec {q}\end{aligned}$$

    holds for any pair of points \((\vec {p}, \vec {q})\in \mathbb R^N\times \mathbb R^N\). The equality holds iff \(\vec {q}\in \partial F(\vec {p})\), iff \(\vec {p}\in \partial F^{*}(\vec {q})\).

  6. (vi)

    The Legendre transform is involuting, i.e \(F^{**}=F\) if F is convex and closed.

Returning to our case, let \(F(\vec {p}):=\Xi ^0_{\vec {\psi }}(\vec {p})\). It is a convex function on \(\mathbb R^N\) by Lemma 5.1. Moreover, its partial derivatives exists at any point in \(\mathbb R^N\), which implies that its sub-gradient is s singleton. Recalling (9) with \(\Xi _{\vec {\psi }}\) we get that

$$\begin{aligned} F^{*}(\vec {m})= -\Sigma _{\vec {\psi }}(-\vec {m}) \end{aligned}$$

takes finite values only on the simplex (51). So, we only have to prove the existence of a unique minimizer (10) on the set \(S_N\cap \{\vec {m}\le \vec {M}\}\), which is a convex set as well. We prove below that \(F^{*}\) is strictly convex on the simples. This implies the strict concavity of \(\Sigma _{\vec {\psi }}\) on the same simplex.

Assume \(F^{*}\) is not strictly convex. It means there exists \(\vec {m}_1\not = \vec {m}_2\in S_N\) for which

$$\begin{aligned} F^{*}\left( \frac{\vec {m}_1+\vec {m}_2}{2}\right) =\frac{F^{*}(\vec {m}_1)+F^{*}(\vec {m}_2)}{2}. \end{aligned}$$
(80)

Let \(\vec {m}:=\vec {m}_1/2+\vec {m}_2/2\), and \(\vec {p}\in \partial F^{*}(\vec {m})\). Then, by (iv, v)

$$\begin{aligned} 0=F^{*}(\vec {m})+ F^{**}(\vec {p})-\vec {p}\cdot \vec {m}=F^{*}(\vec {m}) +F(\vec {p})-\vec {p}\cdot \vec {m}. \end{aligned}$$
(81)

By (80, 81):

$$\begin{aligned} \frac{1}{2}\left( F^{*}(\vec {m}_1)+F(\vec {p})-\vec {p}\cdot \vec {m}_1 \right) + \frac{1}{2}\left( F^{*}(\vec {m}_2)+F(\vec {p})-\vec {p}\cdot \vec {m}_2 \right) =0 \end{aligned}$$

while (v) also guarantees

$$\begin{aligned} F^{*}(\vec {m}_i)+F(\vec {p})-\vec {p}\cdot \vec {m}_i\ge 0, \quad i=1,2. \end{aligned}$$

It follows

$$\begin{aligned} F^{*}(\vec {m}_i)-F(\vec {p})+\vec {p}\cdot \vec {m}_i= 0, \quad i=1,2, \end{aligned}$$

so, by (v) again, \(\{\vec {m}_1, \vec {m}_2\}\in \partial F(\vec {p})\), and we get a contradiction since \(\partial F(\vec {p})\) is a singleton.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wolansky, G. On optimal partitions, individual values and cooperative games: Does a wiser agent always produce a higher value?. Math Finan Econ 11, 85–109 (2017). https://doi.org/10.1007/s11579-016-0172-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11579-016-0172-x

Keywords

JEL Classification

Navigation