Skip to main content
Log in

Local risk-minimization under the benchmark approach

  • Published:
Mathematics and Financial Economics Aims and scope Submit manuscript

Abstract

We study the pricing and hedging of derivatives in incomplete financial markets by considering the local risk-minimization method in the context of the benchmark approach, which will be called benchmarked local risk-minimization. We show that the proposed benchmarked local risk-minimization allows to handle under extremely weak assumptions a much richer modeling world than the classical methodology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. The space \(L^2({\fancyscript{F}}_T,{\mathbb P})\) denotes the set of all \({\fancyscript{F}}_T\)-measurable random variables \(H\) such that \(\mathbb {E} [H^2] = \int H^2\mathrm d{\mathbb P} < \infty \).

  2. If \(S^{\delta _*}\) is the numéraire portfolio, a security price process \(G = \{G_t,\ t \in [0, T]\}\) is called fair if its benchmarked value \(\hat{G} = \frac{G}{S^{\delta _*}}\) forms a \(\mathbb P\)-martingale.

  3. Here, \(a^\top \) identifies the transpose of the vector-valued process \(a\).

  4. Two square-integrable \({\mathbb P}\)-martingales \(N\) and \(O\) are called strongly orthogonal if their product \(NO\) is a \({\mathbb P}\)-martingale.

  5. The original definition of a locally risk-minimizing strategy is given in [28] and formalizes the intuitive idea that changing an optimal strategy over a small time interval increases the risk, at least asymptotically. Since it is a rather technical definition, it has been introduced the concept of a pseudo-locally risk-minimizing (or pseudo-optimal) strategy that is both easier to find and to characterize, as Proposition 1 will show in the following. Moreover, in the one-dimensional case and if \(\hat{S}\) is sufficiently well-behaved, pseudo-optimal and locally risk-minimizing strategies are the same, see Theorem 3.3 of [28].

References

  1. Ansel, J.P., Stricker, C., : Décomposition de Kunita-Watanabe. In: Séminair de Probabilités XXVII, Lecture Notes in Mathematics 1557. Springer, Berlin (1993)

  2. Becherer, D.: The numeraire portfolio for unbounded semimartingales. Finance Stoch. 5(3), 327–341 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  3. Biagini, F.: Evaluating hybrid products: the interplay between financial and insurance markets. In: Dalang, R.C., Dozzi, M., Russo, F. (eds.), Seminar on Stochastic Analysis, Random Fields and Applications VII, vol. 67 of Progress in Probability, pp. 285–304. Birkhäuser (2013)

  4. Biagini, F., Cretarola, A.: Quadratic hedging methods for defaultable claims. Appl. Math. Optim. 56(3), 425–443 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  5. Biagini, F., Pratelli, M.: Local risk minimization and numéraire. J. Appl. Probab. 36(4), 1126–1139 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  6. Biagini, F., Widenmann, J.: Pricing of unemployment insurance products with doubly stochastic markov chains. Int. J. Theor. Appl. Finance 15(4), 1250025 (2012)

    Article  MathSciNet  Google Scholar 

  7. Bielecki, T.R., Rutkowski, M.: Credit Risk: Modeling, Valuation and Hedging, 1st ed. Springer Finance, Springer, Berlin, 2002 (Corr. 2nd printing) (2004)

  8. Christensen, M.M., Larsen, K.: No arbitrage and the growth optimal portfolio. Stoch. Anal. Appl. 25(1), 255–280 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  9. Dellacherie, C., Meyer, P.A.: Probabilities and Potential. North Holland, Amsterdam (1978)

    MATH  Google Scholar 

  10. Dellacherie, C., Meyer, P.A.: Probabilities and Potential B. North Holland, Amsterdam (1982)

    MATH  Google Scholar 

  11. Du, K., Platen, E.: Benchmarked risk minimization. Math. Finance. (in press)

  12. Föllmer, H., Schweizer, M.: Hedging of contingent claims under incomplete information. In: Davis, M.H.A., Elliott, R.J. (eds.) Applied Stochastic Analysis, pp. 389–414. Gordon and Breach (1991)

  13. Föllmer, H., Schweizer, M.: The minimal martingale measure. Encyclopedia of Quantitative Finance, pp. 1200–1204. Wiley (2010)

  14. Föllmer, H., Sondermann, D.: Hedging of non-redundant contingent claims. In: Hildenbrand, W., Mas-Colell, A. (eds.) Contributions to Mathematical Economics, pp. 205–223. North Holland (1986)

  15. Goll, T., Kallsen, J.: A complete explicit solution to the log optimal portfolio problem. Ann. Appl. Probab. 13(2), 774–799 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  16. Heath, D., Platen, E., Schweizer, M.: A comparison of two quadratic approaches to hedging in incomplete markets. Math. Finance 11(4), 385–413 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  17. Hulley, H., Schweizer, M. : \({M}^6\): on minimal market models and minimal martingale measures. In: Chiarella, C., Novikov, A. (eds.) Contemporary Quantitative Finance. Essays in Honour of Eckhard Platen, pp. 35–51. Springer (2010)

  18. Jacod, J., Shiryaev, A.N.: Limit Theorems for Stochastic Processes. Springer, Berlin (2003)

    Book  MATH  Google Scholar 

  19. Karatzas, I., Kardaras, C.: The numéraire portfolio in semimartingale financial models. Finance Stoch. 11(4), 447–493 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  20. Kardaras, C.: Market viability via absence of arbitrage of the first kind. Finance Stoch. 16(4), 651–667 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  21. Long, J.B.: The numéraire portfolio. J. Financ. Econ. 26(1), 29–69 (1990)

    Article  Google Scholar 

  22. Merton, R.C.: An intertemporal capital asset pricing model. Econometrica 41(5), 867–887 (1973)

    Article  MATH  MathSciNet  Google Scholar 

  23. Platen, E.: Diversified portfolios with jumps in a benchmark framework. Asia-Pac. Financ. Markets 11(1), 1–22 (2005)

    Article  Google Scholar 

  24. Platen, E.: A unifying approach to asset pricing. Research Paper Series 227, Quantitative Finance Research Centre, University of Technology, Sydney (2008)

  25. Platen, E., Heath, D.: A Benchmark Approach to Quantitative Finance. Springer Finance, Berlin (2006)

    Book  MATH  Google Scholar 

  26. Protter, P.: Stochastic Integration and Differential Equations. Volume 21 of Applications of Mathematics, 2nd edn. Springer, Berlin (2004)

  27. Schweizer, M.: On the minimal martingale measure and the Föllmer–Schweizer decomposition. Stoch. Anal. Appl. 13, 573–599 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  28. Schweizer, M.: A guided tour through quadratic hedging approaches. In: Jouini, E., Cvitanic, J., Musiela, M. (eds.) Option Pricing, Interest Rates and Risk Management, pp. 538–574. Cambridge University Press, Cambridge (2001)

Download references

Acknowledgments

The authors like to thank Martin Schweizer and Wolfgang Runggaldier for valuable discussions. We also express our gratitude to an unknown referee, whose comments contributed to significant improvements of the presentation of this manuscript. The research leading to these results has received funding from the European Research Council under the European Community’s Seventh Framework Programme (FP7/2007-2013)/ERC grant agreement no [228087].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francesca Biagini.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Biagini, F., Cretarola, A. & Platen, E. Local risk-minimization under the benchmark approach. Math Finan Econ 8, 109–134 (2014). https://doi.org/10.1007/s11579-014-0115-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11579-014-0115-3

Keywords

JEL Classification

Navigation