Skip to main content

Advertisement

Log in

Pterostilbene ameliorates intracerebroventricular streptozotocin induced memory decline in rats

  • Research Article
  • Published:
Cognitive Neurodynamics Aims and scope Submit manuscript

Abstract

There is strong evidence that mitochondrial dysfunction mediated oxidative stress results in aging and energy metabolism deficits thus playing a prime role in pathogenesis of Alzheimer’s disease, neuronal death and cognitive dysfunction. Evidences accrued in empirical studies suggest the antioxidant, anticancer and anti-inflammatory activities of the phytochemical pterostilbene (PTS). PTS also exhibits favourable pharmacokinetic attributes compared to other stilbenes. Hence, in the present study, we explored the neuroprotective role of PTS in ameliorating the intracerebroventricular administered streptozotocin (STZ) induced memory decline in rats. PTS at doses of 10, 30 and 50 mg/kg, was administered orally to STZ administered Sprague–Dawley (SD) rats. The learning and memory tests, Morris water maze test and novel object recognition test were performed which revealed improved cognition on PTS treatment. Further, there was an overall improvement in brain antioxidant parameters like elevated catalase and superoxide dismutase activities, GSH levels, lowered levels of nitrites, lipid peroxides and carbonylated proteins. There was improved cholinergic transmission as evident by decreased acetylcholinesterase activities. The action of ATPases (Na+ K+, Ca2+ and Mg2+) indicating the maintenance of cell membrane potential was also augmented. mRNA expression of battery of genes involved in cellular mitochondrial biogenesis and inflammation showed variations which extrapolate to hike in mitochondrial biogenesis and abated inflammation. The histological findings corroborated the effective role of PTS in countering STZ induced structural aberrations in brain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Abdalla B, Bisharat B, Abir M et al (2012) Traditional and modern medicine harmonizing the two approaches in the treatment of neurodegeneration (Alzheimer’s disease-AD). Complementary Therapies for the Contemporary Healthcare: Intech, pp 181–212

  • Acharya JD, Ghaskadbi SS (2013) Protective effect of Pterostilbene against free radical mediated oxidative damage. Complement Altern Med 13:238

    Article  Google Scholar 

  • Aebi H, Scherz B, Ben-Yoseph Y et al (1975) Dissociation of erythrocyte catalase into subunits and their re-association. Experientia 31:397–399

    Article  CAS  PubMed  Google Scholar 

  • Ahmed ME, Khan MM, Javed H et al (2013) Amelioration of cognitive impairment and neurodegeneration by catechin hydrate in rat model of streptozotocin-induced experimental dementia of Alzheimer’s type. Neurochem Int 62:492–501

    Article  Google Scholar 

  • Amenta F, Di Tullio MA, Tomassoni D (2002) The cholinergic approach for the treatment of vascular dementia: evidence from pre-clinical and clinical studies. Clin Exp Hypertens 24:697–713

    Article  CAS  PubMed  Google Scholar 

  • Awasthi H, Tota S, Hanif K et al (2010) Protective effect of curcumin against intracerebral streptozotocin induced impairment in memory and cerebral blood flow. Life Sci 86:87–94

    Article  CAS  PubMed  Google Scholar 

  • Bhaskaran S, Vishwaraman M (2009) process for obtaining purified Pterostilbene and methods of use thereof. US patent 20110144053 2009 July 30

  • Buege JA, Aust SD (1978) Microsomal lipid peroxidation. Methods Enzymol 52:302–310

    Article  CAS  PubMed  Google Scholar 

  • Carlini VP (2011) The object recognition task: a new proposal for the memory performance study. Intech. doi:10.5772/14667

    Google Scholar 

  • Castegna A, Drake J, Pocernich C et al (2003) Protein carbonyl levels—an assessment of protein oxidation. In: Hensley K, Floyd RA (eds) Methods in biological oxidative stress. Humana Press Inc., Totowa, NJ, pp 161–168

    Chapter  Google Scholar 

  • Castellani R, Hirai K, Aliev G et al (2002) Role of mitochondrial dysfunction in Alzheimer’s disease. J Neurosci Res 70:357–360

    Article  CAS  PubMed  Google Scholar 

  • Chakravarthy MV, Zhu Y, López M et al (2007) Brain fatty acid synthase activates PPARα to maintain energy homeostasis. J Clin Invest 117:2539–2552

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chang J, Rimando A, Pallas M et al (2012) Low-dose pterostilbene, but not resveratrol, is a potent neuromodulator in aging and Alzheimer’s disease. Neurobiol Aging 33:2062–2071

    Article  CAS  PubMed  Google Scholar 

  • Chartier-Harlin MC, Crawford F, Hamandi K et al (1991) Screening for the β-amyloid precursor protein mutation (APP717: Val → Ile) in extended pedigrees with early onset Alzheimer’s disease. Neurosci Lett 129:134–135

    Article  CAS  PubMed  Google Scholar 

  • Chew LJ, Takanohashi A, Bell M (2006) Microglia and inflammation: impact on developmental brain injuries. Ment Retard Dev Disabil Res Rev 12:105–112

    Article  PubMed  Google Scholar 

  • Dalle-Donne I, Aldini G, Carini M et al (2006) Protein carbonylation, cellular dysfunction, and disease progression. J Cell Mol Med 10:389–406

    Article  CAS  PubMed  Google Scholar 

  • Drolet G, Laforest S, Bédard PJ et al (2009) Progress in neuro-psychopharmacology & biological psychiatry. Elsevier: Amsterdam 33:1289–1586

    Google Scholar 

  • Duthey B (2013) Background paper 6.11: Alzheimer disease and other dementias. A public health approach to innovation. http://www.who.int/medicines/areas/priority_medicines/BP611Alzheimer.pdf. Accessed 8 Jun 2014

  • Ellman GL, Courtney K, Andres V et al (1961) A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem Pharmacol 7:88–95

    Article  CAS  PubMed  Google Scholar 

  • Farovik A, Dupont LM, Eichenbaum H (2010) Distinct roles for dorsal CA3 and CA1 in memory for sequential nonspatial events. Learn Mem 17:12–17

    Article  PubMed  PubMed Central  Google Scholar 

  • Feige JN, Gelman L, Michalik L et al (2006) From molecular action to physiological outputs: peroxisome proliferator-activated receptors are nuclear receptors at the crossroads of key cellular functions. Prog Lipid Res 45:120–159

    Article  CAS  PubMed  Google Scholar 

  • Fidaleo M, Fanelli F, Paola Ceru M et al (2014) Neuroprotective properties of peroxisome proliferator-activated receptor alpha (PPARα) and its lipid ligands. Curr Med Chem 21:2803–2821

    Article  CAS  PubMed  Google Scholar 

  • Fiske CH, Subbarow Y (1925) The colorimetric determination of phosphorus. J Biol Chem 66:375–400

    CAS  Google Scholar 

  • Geula C (1998) Abnormalities of neural circuitry in Alzheimer’s disease Hippocampus and cortical cholinergic innervation. Neurol 51:S18–S29

    Article  CAS  Google Scholar 

  • Ghosh A, Jana M, Modi K et al (2015) Activation of peroxisome proliferator-activated receptor α induces lysosomal biogenesis in brain cells implications for lysosomal storage disorders. J Biol Chem 290:10309–10324

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gibson G, Blass J (1976) Impaired synthesis of acetylcholine in brain accompanying mild hypoxia and hypoglycemia. J Neurochem 27:37–42

    Article  CAS  PubMed  Google Scholar 

  • Greco SJ, Bryan KJ, Sarkar S et al (2010) Leptin reduces pathology and improves memory in a transgenic mouse model of Alzheimer’s disease. J Alzheimers Dis 19:1155

    CAS  PubMed  PubMed Central  Google Scholar 

  • Green LC, Wagner DA, Glogowski J et al (1982) Analysis of nitrate, nitrite, and [15 N] nitrate in biological fluids. Anal Biochem 126:131–138

    Article  CAS  PubMed  Google Scholar 

  • Grieb P (2015) Intracerebroventricular streptozotocin injections as a model of Alzheimer’s disease: in search of a relevant mechanism. Mol Neurobiol 53:1–12

    Google Scholar 

  • Grover J, Vats V, Yadav S (2005) Pterocarpus marsupium extract (Vijayasar) prevented the alteration in metabolic patterns induced in the normal rat by feeding an adequate diet containing fructose as sole carbohydrate. Diab Obes Metab 7:414–420

    Article  CAS  Google Scholar 

  • Harman D (1992) Free radical theory of aging. Mutat Res DNAging 275:257–266

    Article  CAS  Google Scholar 

  • Hartree EF (1972) Determination of protein: a modification of the Lowry method that gives a linear photometric response. Anal Biochem 48:422–427

    Article  CAS  PubMed  Google Scholar 

  • Hjertén S, Pan H (1983) Purification and characterization of two forms of a low-affinity Ca 2 + -ATPase from erythrocyte membranes. BBA Biomembr 728:281–288

    Article  Google Scholar 

  • Hou Y, Xie G, Miao F et al (2014) Pterostilbene attenuates lipopolysaccharide-induced learning and memory impairment possibly via inhibiting microglia activation and protecting neuronal injury in mice. Prog Neuro Psychopharmacol Biol Psych 54:92–102

    Article  CAS  Google Scholar 

  • Ishrat T, Hoda MN, Khan MB et al (2009) Amelioration of cognitive deficits and neurodegeneration by curcumin in rat model of sporadic dementia of Alzheimer’s type (SDAT). Eur Neuropsychopharmacol 19:636–647

    Article  CAS  PubMed  Google Scholar 

  • Javed H, Khan M, Ahmad A et al (2012) Rutin prevents cognitive impairments by ameliorating oxidative stress and neuroinflammation in rat model of sporadic dementia of Alzheimer type. Neurosci 210:340–352

    Article  CAS  Google Scholar 

  • Jollow D, Mitchell J, Zampaglione N et al (1974) Bromobenzene-induced liver necrosis. Protective role of glutathione and evidence for 3,4-bromobenzene oxide as the hepatotoxic metabolite. Pharmacol 11:151–169

    Article  CAS  Google Scholar 

  • Jones RW (2003) Have cholinergic therapies reached their clinical boundary in Alzheimer’s disease? Int J Geriatr Psychiatry 18:S7–S13

    Article  PubMed  Google Scholar 

  • Joseph J, Fisher D, Bielinski D (2006) Blueberry extract alters oxidative stress-mediated signaling in COS-7 cells transfected with selectively vulnerable muscarinic receptor subtypes. J Alzheimers Dis 9:35–42

    CAS  PubMed  Google Scholar 

  • Joseph JA, Rimando AM, Shukitt-Hale B (2008) Method to ameliorate oxidative stress and improve working memory via pterostilbene administration. US patent WO2009032870 A3

  • Kapetanovic IM, Muzzio M, Huang Z et al (2011) Pharmacokinetics, oral bioavailability, and metabolic profile of resveratrol and its dimethylether analog, pterostilbene, in rats. Cancer Chemother Pharmacol 68:593–601

    Article  CAS  PubMed  Google Scholar 

  • Karasawa J, Hashimoto K, Chaki S (2008) D-Serine and a glycine transporter inhibitor improve MK-801-induced cognitive deficits in a novel object recognition test in rats. Behav Brain Res 186:78–83

    Article  CAS  PubMed  Google Scholar 

  • Kosaraju J, Madhunapantula SV, Chinni S et al (2014) Dipeptidyl peptidase-4 inhibition by Pterocarpus marsupium and Eugenia jambolana ameliorates streptozotocin induced Alzheimer’s disease. Behav Brain Res 267:55–65

    Article  CAS  PubMed  Google Scholar 

  • Kuijpers W, Bonting S (1970) The cochlear potentials. Pflugers Archiv 320:348–358

    Article  CAS  PubMed  Google Scholar 

  • Lannert H, Hoyer S (1998) Intracerebroventricular administration of streptozotocin causes long-term diminutions in learning and memory abilities and in cerebral energy metabolism in adult rats. Behav Neurosci 112:1199

    Article  CAS  PubMed  Google Scholar 

  • Lester-Coll N, Rivera EJ, Soscia SJ et al (2006) Intracerebral streptozotocin model of type 3 diabetes: relevance to sporadic Alzheimer’s disease. J Alzheimers Dis 9:13–33

    CAS  PubMed  Google Scholar 

  • Li L, Zhang ZF, Holscher C et al (2012) (Val 8) glucagon-like peptide-1 prevents tau hyperphosphorylation, impairment of spatial learning and ultra-structural cellular damage induced by streptozotocin in rat brains. Eur J Pharmacol 674:280–286

    Article  CAS  PubMed  Google Scholar 

  • Manickam M, Ramanathan M, Farboodniay Jahromi M et al (1997) Antihyperglycemic activity of phenolics from Pterocarpus marsupium. J Nat Prod 60:609–610

    Article  CAS  PubMed  Google Scholar 

  • Mariani E, Polidori M, Cherubini A et al (2005) Oxidative stress in brain aging, neurodegenerative and vascular diseases: an overview. J Chromatogr B 827:65–75

    Article  CAS  Google Scholar 

  • McFadden D (2013) A review of pterostilbene antioxidant activity and disease modification. Oxid Med Cell Longev 2013:1–15

    Google Scholar 

  • Mehla J, Pahuja M, Gupta P et al (2013) Clitoria ternatea ameliorated the intracerebroventricularly injected streptozotocin induced cognitive impairment in rats: behavioral and biochemical evidence. Psychopharmacol 230:589–605

    Article  CAS  Google Scholar 

  • Meraz Ríos MA, Toral Rios D, Franco Bocanegra D et al (2013) Inflammatory process in Alzheimer’s disease. Front Integr Neurosci 7:741–749

    Article  Google Scholar 

  • Misra HP, Fridovich I (1972) The role of superoxide anion in the autoxidation of epinephrine and a simple assay for superoxide dismutase. J Biol Chem 247:3170–3175

    CAS  PubMed  Google Scholar 

  • Moreira PI, Duarte AI, Santos MS et al (2009) An integrative view of the role of oxidative stress, mitochondria and insulin in Alzheimer’s disease. J Alzheimers Dis 16:741

    PubMed  Google Scholar 

  • Moreira PI, Carvalho C, Zhu X et al (2010) Mitochondrial dysfunction is a trigger of Alzheimer’s disease pathophysiology. Biochim Biophysica Acta Mol Basis Dis 1802:2–10

    Article  CAS  Google Scholar 

  • Moreno S, Cerù MP (2015) In search for novel strategies towards neuroprotection and neuroregeneration: is PPARα a promising therapeutic target? Neural Regen Res 10:1409

    Article  PubMed  PubMed Central  Google Scholar 

  • Naderali EK, Ratcliffe SH, Dale MC (2009) Review: obesity and Alzheimer’s disease: a link between body weight and cognitive function in old age. Am J Alzheimers Dis Dementias 24:445–449

    Article  Google Scholar 

  • Ohnishi T, Suzuki T, Suzuki Y et al (1982) A comparative study of plasma membrane Mg2+-ATPase activities in normal, regenerating and malignant cells. Biochim Biophysica Acta Biomem 684:67–74

    Article  CAS  Google Scholar 

  • Ouk T, Gautier S, Pétrault M et al (2014) Effects of the PPAR-α agonist fenofibrate on acute and short-term consequences of brain ischemia. J Cereb Blood Flow Metab 34:542–551

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pan MH, Chang YH, Tsai ML et al (2008) Pterostilbene suppressed lipopolysaccharide-induced up-expression of iNOS and COX-2 in murine macrophages. J Agri Food Chem 56:7502–7509

    Article  CAS  Google Scholar 

  • Pathan AR, Viswanad B, Sonkusare SK et al (2006) Chronic administration of pioglitazone attenuates intracerebroventricular streptozotocin induced-memory impairment in rats. Life Sci 79:2209–2216

    Article  CAS  PubMed  Google Scholar 

  • Paxinos G, Ashwell KW, Tork I (2013) Atlas of the developing rat nervous system, 2nd edn. Academic, San Diego

    Google Scholar 

  • Peixoto FP, Carrola J, Coimbra AM et al (2013) Oxidative stress responses and histological hepatic alterations in barbel, Barbus bocagei, from Vizela River, Portugal. Rev Int Contam Ambient 29:29–38

    CAS  Google Scholar 

  • Pinsky MR, Brochard L, Mancebo J et al (2006) Applied physiology in intensive care medicine. Springer, Berlin, pp 53–56

    Book  Google Scholar 

  • Prasad KN, Cole WC, Prasad KC (2002) Risk factors for Alzheimer’s disease: role of multiple antioxidants, non-steroidal anti-inflammatory and cholinergic agents alone or in combination in prevention and treatment. J Am Coll Nutr 21:506–522

    Article  CAS  PubMed  Google Scholar 

  • Pyper SR, Viswakarma N, Yu S et al (2010) PPARα: energy combustion, hypolipidemia, inflammation and cancer. Nucl Recept Sig 8:1–21

    Article  Google Scholar 

  • Rai S, Kamat PK, Nath C et al (2014) Glial activation and post-synaptic neurotoxicity: the key events in streptozotocin (ICV) induced memory impairment in rats. Pharmacol Biochem Behav 117:104–117

    Article  CAS  PubMed  Google Scholar 

  • Reddy PH (2006) Amyloid precursor protein-mediated free radicals and oxidative damage: implications for the development and progression of Alzheimer’s disease. J Neurochem 96:1–13

    Article  CAS  PubMed  Google Scholar 

  • Remsberg CM, Yáñez JA, Ohgami Y et al (2008) Pharmacometrics of pterostilbene: preclinical pharmacokinetics and metabolism, anticancer, antiinflammatory, antioxidant and analgesic activity. Phytother Res 22:169–179

    Article  CAS  PubMed  Google Scholar 

  • Rimando AM, Nagmani R, Feller DR et al (2005) Pterostilbene, a new agonist for the peroxisome proliferator-activated receptor α-isoform, lowers plasma lipoproteins and cholesterol in hypercholesterolemic hamsters. J Agri Food Chem 53:3403–3407

    Article  CAS  Google Scholar 

  • Rubin D, Rubin T (2009) Method and compositions for administering resveratrol and pterostilbene. EP patent WO2009089338 A2

  • Saxena G, Singh SP, Pal R et al (2007) Gugulipid, an extract of Commiphora whighitii with lipid-lowering properties, has protective effects against streptozotocin-induced memory deficits in mice. Pharmacol Biochem Behav 86:797–805

    Article  CAS  PubMed  Google Scholar 

  • Saxena G, Singh SP, Agrawal R et al (2008) Effect of donepezil and tacrine on oxidative stress in intracerebral streptozotocin-induced model of dementia in mice. Eur J Pharmacol 581:283–289

    Article  CAS  PubMed  Google Scholar 

  • Saxena G, Bharti S, Kamat PK et al (2010) Melatonin alleviates memory deficits and neuronal degeneration induced by intracerebroventricular administration of streptozotocin in rats. Pharmacol Biochem Behav 94:397–403

    Article  CAS  PubMed  Google Scholar 

  • Saxena G, Patro IK, Nath C (2011) ICV STZ induced impairment in memory and neuronal mitochondrial function: a protective role of nicotinic receptor. Behav Brain Res 224:50–57

    Article  CAS  PubMed  Google Scholar 

  • Schmatz R, Mazzanti CM, Spanevello R et al (2009) Resveratrol prevents memory deficits and the increase in acetylcholinesterase activity in streptozotocin-induced diabetic rats. Eur J Pharmacol 610:42–48

    Article  CAS  PubMed  Google Scholar 

  • Sharma M, Gupta Y (2001) Effect of chronic treatment of melatonin on learning, memory and oxidative deficiencies induced by intracerebroventricular streptozotocin in rats. Pharmacol Biochem Behav 70:325–331

    Article  CAS  PubMed  Google Scholar 

  • Siddiqui MF, Levey A (1999) Cholinergic therapies in Alzheimer’s disease. Drugs Future 24:417–424

    Article  CAS  Google Scholar 

  • Sisodia SS, Kim SH, Thinakaran G (1999) Function and dysfunction of the presenilins. Am J Hum Genet 65:7–12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Streck EL, Zugno AI, Tagliari B et al (2001) Inhibition of rat brain Na+, K+-ATPase activity induced by homocysteine is probably mediated by oxidative stress. Neurochem Res 26:1195–1200

    Article  CAS  PubMed  Google Scholar 

  • Szkudelski T (2012) Streptozotocin–nicotinamide-induced diabetes in the rat. Characteristics of the experimental model. Exp Biol Med 237:481–490

    Article  CAS  Google Scholar 

  • Taglialatela G, Hogan D, Zhang WR et al (2009) Intermediate-and long-term recognition memory deficits in Tg2576 mice are reversed with acute calcineurin inhibition. Behav Brain Res 200:95–99

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tota S, Kamat PK, Shukla R et al (2011) Improvement of brain energy metabolism and cholinergic functions contributes to the beneficial effects of silibinin against streptozotocin induced memory impairment. Behav Brain Res 221:207–215

    Article  CAS  PubMed  Google Scholar 

  • Vauzour D (2012) Dietary polyphenols as modulators of brain functions: biological actions and molecular mechanisms underpinning their beneficial effects. Oxid Med Cell Longev 2012:1–16

    Article  Google Scholar 

  • Weinstock M, Kirschbaum SN, Lazarovici P et al (2001) Neuroprotective effects of novel cholinesterase inhibitors derived from rasagiline as potential anti-Alzheimer drugs. Ann N Y Acad Sci 939:148–161

    Article  CAS  PubMed  Google Scholar 

  • White RF, Marans KS, Krengel M (2000) Psychological/behavioral symptoms in neurological disorders. In: Emergencies in mental health practice: evaluation and management, pp 312–331

  • Xuan AG, Chen Y, Long DH et al (2014) PPARα agonist fenofibrate ameliorates learning and memory deficits in rats following global cerebral ischemia. Mol Neurobiol 52:1–9

    Google Scholar 

  • Yan LJ (2009) Analysis of oxidative modification of proteins. Curr Protoc Protein Sci. doi:10.1002/0471140864.ps1404s55

    Google Scholar 

  • Zeevalk GD, Bernard LP, Nicklas WJ (1998) Role of oxidative stress and the glutathione system in loss of dopamine neurons due to impairment of energy metabolism. J Neurochem 70:1421–1430

    Article  CAS  PubMed  Google Scholar 

  • Zhang J-M et al (2007) Cytokines, inflammation and pain. Int Anesthesiol Clin 45(2):27–37

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhanga R, Xuea G, Wanga S et al (2012) Novel object recognition as a facile behavior test for evaluating drug effects in APP/PS1 Alzheimer’s disease mouse model. J Alzheimers Dis 31:801–812

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anuradha Majumdar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Naik, B., Nirwane, A. & Majumdar, A. Pterostilbene ameliorates intracerebroventricular streptozotocin induced memory decline in rats. Cogn Neurodyn 11, 35–49 (2017). https://doi.org/10.1007/s11571-016-9413-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11571-016-9413-1

Keywords

Navigation