Skip to main content
Log in

Delay decomposition approach to \(\mathcal {H}_{\infty }\) filtering analysis of genetic oscillator networks with time-varying delays

  • Research Article
  • Published:
Cognitive Neurodynamics Aims and scope Submit manuscript

Abstract

In this paper, the \(\mathcal {H}_{\infty }\) filtering problem is treated for N coupled genetic oscillator networks with time-varying delays and extrinsic molecular noises. Each individual genetic oscillator is a complex dynamical network that represents the genetic oscillations in terms of complicated biological functions with inner or outer couplings denote the biochemical interactions of mRNAs, proteins and other small molecules. Throughout the paper, first, by constructing appropriate delay decomposition dependent Lyapunov–Krasovskii functional combined with reciprocal convex approach, improved delay-dependent sufficient conditions are obtained to ensure the asymptotic stability of the filtering error system with a prescribed \(\mathcal {H}_{\infty }\) performance. Second, based on the above analysis, the existence of the designed \(\mathcal {H}_{\infty }\) filters are established in terms of linear matrix inequalities with Kronecker product. Finally, numerical examples including a coupled Goodwin oscillator model are inferred to illustrate the effectiveness and less conservatism of the proposed techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Alofi A, Ren F, Al-Mazrooei A, Elaiw A, Cao J (2015) Power-rate synchronization of coupled genetic oscillators with unbounded time-varying delay. Cogn Neurodyn. doi:10.1007/s11571-015-9344-2

    Google Scholar 

  • Amos M (2014) Population-based microbial computing: A third wave of synthetic biology? Int J Gen Syst 43:770–782

    Article  Google Scholar 

  • Chen B, Hsu C (2012) Robust synchronization control scheme of a population of nonlinear stochastic synthetic genetic oscillators under intrinsic and extrinsic molecular noise via quorum sensing. BMC Syst Biol 6:136

    Article  PubMed  PubMed Central  Google Scholar 

  • Cheng J, Li G, Zhu H, Zhong S, Zeng Y (2013) Finite-time \(\cal H_{\infty }\) control for a class of Markovian jump systems with mode-dependent time-varying delay. Adv Differ Equ 2013:214

    Article  Google Scholar 

  • Elowitz MB, Leibler S (2000) A synthetic oscillatory network of transcriptional regulators. Nature 403:335–338

    Article  CAS  PubMed  Google Scholar 

  • Fraser A, Tiwari J (1974) Genetical feedback-repression: II. Cyclic genetic systems. J Theor Biol 47:397–412

    Article  CAS  PubMed  Google Scholar 

  • Ge C, Hua C, Guan X (2014) New delay-dependent stability criteria for neutral systems with time-varying delay using delay-decomposition approach. Int J Control Autom Syst 12:786–793

    Article  Google Scholar 

  • Gonze D (2010) Coupling oscillations and switches in genetic networks. BioSystems 99:60–69

    Article  PubMed  Google Scholar 

  • Goodwin BC (1965) Oscillatory behavior in enzymatic control processes. Adv Enzyme Regul 3:425–438

    Article  CAS  PubMed  Google Scholar 

  • Hua M, Zhang J, Chen J, Fei J (2014) Delay decomposition approach to robust delay-dependent \(\cal H_{\infty }\) filtering of uncertain stochastic systems with time-varying delays. Trans Inst Meas Control 36:1143–1152

    Article  Google Scholar 

  • Im SH, Taghert PH (2010) PDF receptor expression reveals direct interactions between circadian oscillators in Drosophila. J Comp Neurol 518:1925–1945

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jacob F, Monod J (1961) Genetic regulatory mechanisms in the synthesis of proteins. J Mol Biol 3:318–356

    Article  CAS  PubMed  Google Scholar 

  • Jarina Banu L, Balasubramaniam P (2014) Synchronisation of discrete-time complex networks with randomly occurring uncertainties, nonlinearities and time-delays. Int J Syst Sci 45:1427–1450

    Article  Google Scholar 

  • Lahav G, Rosenfeld N, Sigal A, Geva-Zatorsky N, Levine AJ (2004) Dynamics of the p53-Mdm2 feedback loop in individual cells. Nat Genet 36:147–150

    Article  CAS  PubMed  Google Scholar 

  • Lakshmanan S, Rihan FA, Rakkiyappan R, Park JH (2014) Stability analysis of the differential genetic regulatory networks model with time-varying delays and Markovian jumping parameters. Nonlinear Anal Hybrid Syst 14:1–15

    Article  Google Scholar 

  • Lakshmanan S, Vembarasan V, Balasubramaniam P (2012) Delay decomposition approach to state estimation of neural networks with mixed time-varying delays and Markovian jumping parameters. Math Method Appl Sci 36:395–412

    Article  Google Scholar 

  • Li C, Chen L, Aihara K (2007) Stochastic synchronization of genetic oscillator networks. BMC Syst Biol 1:6

    Article  PubMed  PubMed Central  Google Scholar 

  • Li P, Lam J (2011) Synchronization in networks of genetic oscillators with delayed coupling. Asian J Control 13:713–725

    Article  Google Scholar 

  • Li Q, Li H (2009) Internal noise-driven circadian oscillator in Drosophila. Biophys Chem 145:57–63

    Article  CAS  PubMed  Google Scholar 

  • Lin C, Chen P, Cheng Y (2015) Synthesising gene clock with toggle switch and oscillator. IET Syst Biol 9:88–94

    Article  PubMed  Google Scholar 

  • Lu L, He B, Man C, Wang S (2015) Passive Synchronization for Markov jump genetic oscillator networks with time-varying delays. Math Biosci 262:80–87

    Article  PubMed  Google Scholar 

  • Mao X (2013) Switches of oscillations in coupled networks with multiple time delays. Neurocomputing 110:1–8

    Article  Google Scholar 

  • Mathiyalagan K, Sakthivel R, Marshal Anthoni S (2012) New robust passivity criteria for discrete-time genetic regulatory networks with Markovian jumping parameters. Can J Phys 90:107–118

    Article  CAS  Google Scholar 

  • O’Brien EL, Itallie EV, Bennett MR (2012) Review modeling synthetic gene oscillators. Math Biosci 236:1–15

    Article  PubMed  Google Scholar 

  • Park PG, Ko JW, Jeong CK (2011) Reciprocally convex approach to stability of systems with time-varying delays. Automatica 47:235–238

    Article  Google Scholar 

  • Pastor-Satorras R, Smith E, Sole RV (2003) Evolving protein interaction networks through gene duplication. J Theor Biol 222:199–210

    Article  CAS  PubMed  Google Scholar 

  • Rakkiyappan R, Sasirekha R (2014) Asymptotic synchronization of continuous/discrete complex dynamical networks by optimal partitioning method. Complexity. doi:10.1002/cplx.21597

    Google Scholar 

  • Revathi VM, Balasubramaniam P, Ratnavelu K (2014) Mode-dependent \(\cal H_{\infty }\) filtering for stochastic Markovian switching genetic regulatory networks with leakage and time-varying delays. Circuits Syst Signal Process 33:3349–3388

    Article  Google Scholar 

  • Smolen P, Baxter DA, Byrne JH (1999) Effects of macromolecular transport and stochastic fluctuations on dynamics of genetic regulatory systems. Am J Physiol 277:C777–C790

    CAS  PubMed  Google Scholar 

  • Stricker J, Cookson S, Bennett MR, Mather WH, Tsimring LS, Hasty J (2008) A fast, robust and tunable synthetic gene oscillator. Nature 456:516–519

    Article  CAS  PubMed  Google Scholar 

  • Uriu K, Morelli LG (2014) Collective cell movement promotes synchronization of coupled genetic oscillators. Biophys J 107:514–526

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wan X, Xu L, Fang H, Yang F, Li X (2014) Exponential synchronization of switched genetic oscillators with time-varying delays. J Frankl Inst 351:4395–4414

    Article  Google Scholar 

  • Wang Y, Hori Y, Hara S, Doyle FJ III (2014) Intercellular delay regulates the collective period of repressively coupled gene regulatory oscillator networks. IEEE Trans Autom Control 59:211–216

    Article  Google Scholar 

  • Wang Z, Lam J, Wei G, Fraser K, Liu X (2008) Filtering for nonlinear genetic regulatory networks with stochastic disturbances. IEEE Trans Autom Control 53:2448–2457

    Article  CAS  Google Scholar 

  • Wang Y, Wang Z, Liang J, Li Y, Du M (2010) Synchronization of stochastic genetic oscillator networks with time delays and Markovian jumping parameters. Neurocomputing 73:2532–2539

    Article  Google Scholar 

  • Wu H, Wang J, Shi P (2011) A delay decomposition approach to \({\cal {L}}_{2}{\text{--}}{{\cal L}}_{\infty }\) filter design for stochastic systems with time-varying delay. Automatica 47:1482–1488

    Article  Google Scholar 

  • Zhang W, Fang J, Miao Q, Chen L, Zhu W (2013) Synchronization of Markovian jump genetic oscillators with nonidentical feedback delay. Neurocomputing 101:347–353

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by UGC-BSR—Research fellowship in Mathematical Sciences—2012–2013, Govt. of India, New Delhi.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Balasubramaniam.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Revathi, V.M., Balasubramaniam, P. Delay decomposition approach to \(\mathcal {H}_{\infty }\) filtering analysis of genetic oscillator networks with time-varying delays. Cogn Neurodyn 10, 135–147 (2016). https://doi.org/10.1007/s11571-015-9371-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11571-015-9371-z

Keywords

Navigation