Skip to main content

Advertisement

Log in

Single-trial detection for intraoperative somatosensory evoked potentials monitoring

  • Research Article
  • Published:
Cognitive Neurodynamics Aims and scope Submit manuscript

Abstract

Abnormalities of somatosensory evoked potentials (SEPs) provide effective evidence for impairment of the somatosensory system, so that SEPs have been widely used in both clinical diagnosis and intraoperative neurophysiological monitoring. However, due to their low signal-to-noise ratio (SNR), SEPs are generally measured using ensemble averaging across hundreds of trials, thus unavoidably producing a tardiness of SEPs to the potential damages caused by surgical maneuvers and a loss of dynamical information of cortical processing related to somatosensory inputs. Here, we aimed to enhance the SNR of single-trial SEPs using Kalman filtering and time–frequency multiple linear regression (TF-MLR) and measure their single-trial parameters, both in the time domain and in the time–frequency domain. We first showed that, Kalman filtering and TF-MLR can effectively capture the single-trial SEP responses and provide accurate estimates of single-trial SEP parameters in the time domain and time–frequency domain, respectively. Furthermore, we identified significant correlations between the stimulus intensity and a set of indicative single-trial SEP parameters, including the correlation coefficient (between each single-trial SEPs and their average), P37 amplitude, N45 amplitude, P37-N45 amplitude, and phase value (at the zero-crossing points between P37 and N45). Finally, based on each indicative single-trial SEP parameter, we investigated the minimum number of trials required on a single-trial basis to suggest the existence of SEP responses, thus providing important information for fast SEP extraction in intraoperative monitoring.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Aminoff MJ, Olney RK, Parry GJ, Raskin NH (1988) Relative utility of different electrophysiologic techniques in the evaluation of brachial plexopathies. Neurology 38:546–550

    Article  CAS  PubMed  Google Scholar 

  • Arieli A, Sterkin A, Grinvald A, Aertsen A (1996) Dynamics of ongoing activity: explanation of the large variability in evoked cortical responses. Science 273:1868–1871

    Article  CAS  PubMed  Google Scholar 

  • Cerutti S, Chiarenza G, Liberati D, Mascellani P, Pavesi G (1988) A parametric method of identification of single-trial event-related potentials in the brain. IEEE Trans Biomed Eng 35:701–711

    Article  CAS  PubMed  Google Scholar 

  • Cruccu G, Aminoff MJ, Curio G, Guerit JM, Kakigi R, Mauguiere F, Rossini PM, Treede RD, Garcia-Larrea L (2008) Recommendations for the clinical use of somatosensory-evoked potentials. Clin Neurophysiol 119:1705–1719

    Article  CAS  PubMed  Google Scholar 

  • Cui H, Wang Y, Li X, Xie X, Xu S, Hu Y (2015) Trial-to-trial latency variability of somatosensory evoked potentials as a prognostic indicator for surgical management of cervical spondylotic myelopathy. J Neuroeng Rehabil 12:49

    Article  PubMed Central  PubMed  Google Scholar 

  • Daly I, Nasuto SJ, Warwick K (2011) Single tap identification for fast BCI control. Cogn Neurodyn 5:21–30

    Article  PubMed Central  PubMed  Google Scholar 

  • Dawson GD (1951) A summation technique for detecting small signals in a large irregular background. J Physiol 115:2p–3p

    CAS  PubMed  Google Scholar 

  • Dawson GD (1954) A summation technique for the detection of small evoked potentials. Electroencephalogr Clin Neurophysiol 6:65–84

    Article  CAS  PubMed  Google Scholar 

  • Debener S, Strobel A, Sorger B, Peters J, Kranczioch C, Engel AK, Goebel R (2007) Improved quality of auditory event-related potentials recorded simultaneously with 3-T fMRI: removal of the ballistocardiogram artefact. Neuroimage 34:587–597

    Article  PubMed  Google Scholar 

  • Deletis V, Shils JL (2002) Neurophysiology in neurosurgery: a modern intraoperative approach. Academic Press, San Diego

    Google Scholar 

  • Delorme A, Makeig S (2004) EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics including independent component analysis. J Neurosci Methods 134:9–21

    Article  PubMed  Google Scholar 

  • Devlin VJ, Anderson PA, Schwartz DM, Vaughan R (2006) Intraoperative neurophysiologic monitoring: focus on cervical myelopathy and related issues. Spine J 6:212S–224S

    Article  PubMed  Google Scholar 

  • Friman O, Borga M, Lundberg P, Knutsson H (2003) Adaptive analysis of fMRI data. Neuroimage 19:837–845

    Article  PubMed  Google Scholar 

  • Friston KJ, Fletcher P, Josephs O, Holmes A, Rugg MD, Turner R (1998) Event-related fMRI: characterizing differential responses. Neuroimage 7:30–40

    Article  CAS  PubMed  Google Scholar 

  • Hu Y, Luk KD, Lu WW, Holmes A, Leong JC (2001a) Comparison of time-frequency distribution techniques for analysis of spinal somatosensory evoked potential. Med Biol Eng Comput 39:375–380

    Article  CAS  PubMed  Google Scholar 

  • Hu Y, Luk KD, Wong YW, Lu WW, Leong JC (2001b) Effect of stimulation parameters on intraoperative spinal cord evoked potential monitoring. J Spinal Disord 14:449–452

    Article  CAS  PubMed  Google Scholar 

  • Hu Y, Luk KD, Lu WW, Leong JC (2002) Comparison of time-frequency analysis techniques in intraoperative somatosensory evoked potential (SEP) monitoring. Comput Biol Med 32:13–23

    Article  PubMed  Google Scholar 

  • Hu Y, Luk KD, Lu WW, Leong JC (2003) Application of time-frequency analysis to somatosensory evoked potential for intraoperative spinal cord monitoring. J Neurol Neurosurg Psychiatry 74:82–87

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hu Y, Lam BS, Chang CQ, Chan FH, Lu WW, Luk KD (2005) Adaptive signal enhancement of somatosensory evoked potential for spinal cord compression detection: an experimental study. Comput Biol Med 35:814–828

    Article  PubMed  Google Scholar 

  • Hu L, Mouraux A, Hu Y, Iannetti GD (2010a) A novel approach for enhancing the signal-to-noise ratio and detecting automatically event-related potentials (ERPs) in single trials. Neuroimage 50:99–111

    Article  CAS  PubMed  Google Scholar 

  • Hu Y, Liu H, Luk KD (2010b) Signal-to-noise ratio of intraoperative tibial nerve somatosensory-evoked potentials. J Clin Neurophysiol 27:30–33

    Article  PubMed  Google Scholar 

  • Hu L, Xiao P, Zhang ZG, Mouraux A, Iannetti GD (2014) Single-trial time-frequency analysis of electrocortical signals: baseline correction and beyond. Neuroimage 84:876–887. doi:10.1016/j.neuroimage.2013.09.055

    Article  CAS  PubMed  Google Scholar 

  • Hu L, Zhang ZG, Mouraux A, Iannetti GD (2015) Multiple linear regression to estimate time-frequency electrophysiological responses in single trials. Neuroimage 111:442–453. doi:10.1016/j.neuroimage.2015.01.062

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Huang G, Liu G, Meng J, Zhang D, Zhu X (2010) Model based generalization analysis of common spatial pattern in brain computer interfaces. Cogn Neurodyn 4:217–223

    Article  PubMed Central  PubMed  Google Scholar 

  • Huang G, Xiao P, Hung YS, Zhang ZG, Hu L (2013) A novel approach to predict subjective pain perception from single-trial laser-evoked potentials. Neuroimage 81C:283–293

    Article  Google Scholar 

  • Iannetti GD, Zambreanu L, Wise RG, Buchanan TJ, Huggins JP, Smart TS, Vennart W, Tracey I (2005) Pharmacological modulation of pain-related brain activity during normal and central sensitization states in humans. Proc Natl Acad Sci USA 102:18195–18200

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Iannetti GD, Hughes NP, Lee MC, Mouraux A (2008) Determinants of laser-evoked EEG responses: pain perception or stimulus saliency? J Neurophysiol 100:815–828

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Jung TP, Makeig S, Westerfield M, Townsend J, Courchesne E, Sejnowski TJ (2001) Analysis and visualization of single-trial event-related potentials. Hum Brain Mapp 14:166–185

    Article  CAS  PubMed  Google Scholar 

  • Lam BS, Hu Y, Lu WW, Luk KD, Chang CQ, Qiu W, Chan FH (2005) Multi-adaptive filtering technique for surface somatosensory evoked potentials processing. Med Eng Phys 27:257–266

    Article  PubMed  Google Scholar 

  • Li JL, Cui H, Chang C, Hu Y (2014) A robotic rehabilitation arm driven by somatosensory brain–computer interface. Int J Med Health Pharm Biomed Eng 8:294–297

    Google Scholar 

  • Luk KD, Hu Y, Wong YW, Leong JC (1999) Variability of somatosensory-evoked potentials in different stages of scoliosis surgery. Spine (Phila Pa 1976) 24:1799–1804

    Article  CAS  Google Scholar 

  • Luk KD, Hu Y, Lu WW, Wong YW (2001) Effect of stimulus pulse duration on intraoperative somatosensory evoked potential (SEP) monitoring. J Spinal Disord 14:247–251

    Article  CAS  PubMed  Google Scholar 

  • Marple SL (1987) Digital spectral analysis: with applications. Prentice-Hall, Englewood Cliffs

    Google Scholar 

  • Mayhew SD, Iannetti GD, Woolrich MW, Wise RG (2006) Automated single-trial measurement of amplitude and latency of laser-evoked potentials (LEPs) using multiple linear regression. Clin Neurophysiol 117:1331–1344

    Article  CAS  PubMed  Google Scholar 

  • Mayhew SD, Dirckx SG, Niazy RK, Iannetti GD, Wise RG (2010) EEG signatures of auditory activity correlate with simultaneously recorded fMRI responses in humans. Neuroimage 49:849–864

    Article  PubMed  Google Scholar 

  • Minahan RE (2002) Intraoperative neuromonitoring. Neurologist 8:209–226

    Article  PubMed  Google Scholar 

  • Mitsis GD, Iannetti GD, Smart TS, Tracey I, Wise RG (2008) Regions of interest analysis in pharmacological fMRI: how do the definition criteria influence the inferred result? Neuroimage 40:121–132

    Article  PubMed  Google Scholar 

  • Mouraux A, Iannetti GD (2008) Across-trial averaging of event-related EEG responses and beyond. Magn Reson Imaging 26:1041–1054

    Article  CAS  PubMed  Google Scholar 

  • Mouraux A, Guerit JM, Plaghki L (2003) Non-phase locked electroencephalogram (EEG) responses to CO2 laser skin stimulations may reflect central interactions between A partial differential- and C-fibre afferent volleys. Clin Neurophysiol 114:710–722

    Article  CAS  PubMed  Google Scholar 

  • Neumaier A, Schneider T (2001) Estimation of parameters and eigenmodes of multivariate autoregressive models. ACM Trans Math Softw 27:27–57

    Article  Google Scholar 

  • Nishida S, Nakamura M, Shibasaki H (1993) Method for single-trial recording of somatosensory evoked potentials. J Biomed Eng 15:257–262

    Article  CAS  PubMed  Google Scholar 

  • Nuwer MR (1998) Spinal cord monitoring with somatosensory techniques. J Clin Neurophysiol 15:183–193

    Article  CAS  PubMed  Google Scholar 

  • Nuwer MR, Lehmann D, Da Silva FL, Matsuoka S, Sutherling W, Vibert JF (1999) IFCN guidelines for topographic and frequency analysis of EEGs and EPs.The International Federation of Clinical Neurophysiology. Electroencephalogr Clin Neurophysiol Suppl 52:15–20

    CAS  PubMed  Google Scholar 

  • Pfurtscheller G, Lopes Da Silva FH (1999) Event-related EEG/MEG synchronization and desynchronization: basic principles. Clin Neurophysiol 110:1842–1857

    Article  CAS  PubMed  Google Scholar 

  • Pockett S, Whalen S, Mcphail AV, Freeman WJ (2007) Topography, independent component analysis and dipole source analysis of movement related potentials. Cogn Neurodyn 1:327–340

    Article  PubMed Central  PubMed  Google Scholar 

  • Rossi L, Bianchi AM, Merzagora A, Gaggiani A, Cerutti S, Bracchi F (2007) Single trial somatosensory evoked potential extraction with ARX filtering for a combined spinal cord intraoperative neuromonitoring technique. Biomed Eng Online 6:2

    Article  PubMed Central  PubMed  Google Scholar 

  • Schlogl A (2006) A comparison of multivariate autoregressive estimators. Signal Process 86:2426–2429

    Article  Google Scholar 

  • Schneider T, Neumaier A (2001) Algorithm 808: ARfit—A matlab package for the estimation of parameters and eigenmodes of multivariate autoregressive models. ACM Trans Math Softw 27:58–65

    Article  Google Scholar 

  • Schwarz G (1978) Estimating dimension of a model. Ann Stat 6:461–464

    Article  Google Scholar 

  • Spencer KM (2005) Averaging, detection, and classification of single-trial ERPs. In: Handy TC (ed) Event-related potentials : a methods handbook. MIT Press, Cambridge, pp 209–227

    Google Scholar 

  • Stark HG (1992) Continuous wavelet transform and continuous multiscale analysis. J Math Anal Appl 169:179–196

    Article  Google Scholar 

  • Tang AC, Sutherland MT, Mckinney CJ (2005) Validation of SOBI components from high-density EEG. Neuroimage 25:539–553

    Article  PubMed  Google Scholar 

  • Tognola G, Grandori F, Ravazzani P (1998) Wavelet analysis of click-evoked otoacoustic emissions. IEEE Trans Biomed Eng 45:686–697

    Article  CAS  PubMed  Google Scholar 

  • Treede RD (2007) Das somatosensorische system. In: Schmidt RF, Lang F (eds) Physiologie des menschen, 30th edn. Springer, Heidelberg, pp 297–323

    Google Scholar 

  • Von Spreckelsen M, Bromm B (1988) Estimation of single-evoked cerebral potentials by means of parametric modeling and Kalman filtering. IEEE Trans Biomed Eng 35:691–700

    Article  Google Scholar 

  • Wang C, Zou J, Zhang J, Wang M, Wang R (2010) Feature extraction and recognition of epileptiform activity in EEG by combining PCA with ApEn. Cogn Neurodyn 4:233–240

    Article  PubMed Central  PubMed  Google Scholar 

  • Wiedemayer H, Fauser B, Sandalcioglu IE, Schafer H, Stolke D (2002) The impact of neurophysiological intraoperative monitoring on surgical decisions: a critical analysis of 423 cases. J Neurosurg 96:255–262

    Article  PubMed  Google Scholar 

  • Yiannikas C, Vucic S (2008) Utility of somatosensory evoked potentials in chronic acquired demyelinating neuropathy. Muscle Nerve 38:1447–1454

    Article  PubMed  Google Scholar 

  • Zeman BD, Yiannikas C (1989) Functional prognosis in stroke: use of somatosensory evoked potentials. J Neurol Neurosurg Psychiatry 52:242–247

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Zhang ZG, Yang JL, Chan SC, Luk KD, Hu Y (2009) Time-frequency component analysis of somatosensory evoked potentials in rats. Biomed Eng Online 8:4

    Article  PubMed Central  PubMed  Google Scholar 

  • Zhang ZG, Luk KD, Hu Y (2010) Identification of detailed time–frequency components in somatosensory evoked potentials. IEEE Trans Neural Syst Rehabil Eng 18:10

    Google Scholar 

  • Zhao Q, Rutkowski TM, Zhang L, Cichocki A (2010) Generalized optimal spatial filtering using a kernel approach with application to EEG classification. Cogn Neurodyn 4:355–358

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

LH is supported by the National Natural Science Foundation of China (31200856, 31471082) and New Teacher Fund of Ministry of Education of China (20120182120002). HTL, KDL, and YH were supported by a Grant from the Research Grants Council of the Hong Kong (767511M) and NSFC (81271685). ZGZ was supported by a Grant from the Research Grants Council of the Hong Kong (785913M).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to L. Hu or Y. Hu.

Ethics declarations

Conflict of interest

All authors have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, L., Zhang, Z.G., Liu, H.T. et al. Single-trial detection for intraoperative somatosensory evoked potentials monitoring. Cogn Neurodyn 9, 589–601 (2015). https://doi.org/10.1007/s11571-015-9348-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11571-015-9348-y

Keywords

Navigation