Skip to main content
Log in

Coupling relationship between the central pattern generator and the cerebral cortex with time delay

  • Research Article
  • Published:
Cognitive Neurodynamics Aims and scope Submit manuscript

Abstract

Brain activity is a cooperative process among neurons and involves the coupling relationship, which is crucial to perform operational tasks in various specialized areas of the nervous system. A finite signal transmission speed along the axons results in a space-dependent time delay. The central pattern generator (CPG) can in principle produce basic locomotor rhythm in the absence of inputs from higher brain centers and peripheral sensory feedback. To study the dynamic performance of CPG with time delay and its coupling relationship with the cerebral cortex, a new CPG model with time delay and a model of the neural mass model (NMM) and the CPG are developed. The coupling model is based on biological experimental results. Bifurcation theories and maximal Lyapunov exponent are used to analyze the dynamic performance. From the results, some CPGs are suggested to be embedded in limbs and composed of the parameters space which corresponds to the one of the cerebral cortex. This embodiment of humans can reduce the burden of the brain and simplify the control of the locomotion. The results also show that the phase diagram of the CPG cannot keep the limit cycle, and that the state of the NMM becomes increasingly chaotic as time delay increases. This finding implies that a person with slow reaction can easily lose the stability of his or her locomotion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Adhikari BM, Prasad A, Dhamala M (2011) Time-delay-induced phase-transition to synchrony in coupled bursting neurons. Chaos 21(2):023116

    Article  PubMed  Google Scholar 

  • Balasubramaniam P, Jarina Banu L (2014) Synchronization criteria of discrete-time complex networks with time-varying delays and parameter uncertainties. Cogn Neurodyn 8:199–215

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Cona F, Zavaglia M, Massimini M et al (2011) A neural mass model of interconnected regions simulates rhythm propagation observed via TMS–EEG. NeuroImage 57(3):1045–1058

    Article  CAS  PubMed  Google Scholar 

  • David O, Friston KJ (2003) A neural mass model for MEG/EEG: coupling and neuronal dynamics. NeuroImage 20(3):1743–1755

    Article  PubMed  Google Scholar 

  • Dhamala M, Jirsa VK, Ding M (2004) Enhancement of neural synchrony by time delay. Phys Rev Lett 92:074104

    Article  PubMed  Google Scholar 

  • Dominici N, Ivanenko YP, Cappellini G et al (2011) Locomotor primitives in newborn babies and their development. Science 334:997–999

    Article  CAS  PubMed  Google Scholar 

  • Drew T, Kalaska J, Krouchev N (2008) Muscle synergies during locomotion in the cat: a model for motor cortex control. J Physiol 586:1239–1245

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Grillner S (2011) Human locomotor circuits conform. Science 334:912–913

    Article  CAS  PubMed  Google Scholar 

  • Grimbert F, Faugeras O (2006) Bifurcation analysis of Jansen’s neural mass model. Neural Comput 18(12):3052–3068

    Article  PubMed  Google Scholar 

  • Gutfreund Y (1998) Patterns of arm muscle activation involved in octopus reaching movements. J Neurosci 18:5976–5987

    CAS  PubMed  Google Scholar 

  • Harris-Warrick RM (2011) Neuromodulation and flexibility in central pattern generator networks. Curr Opin Neurobiol 21(5):685–692

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Huang G, Zhang D, Meng J (2011) Interactions between two neural populations: a mechanism of chaos and oscillation in neural mass model. Nerocomputing 74:1026–1034

    Article  Google Scholar 

  • Jansen BH, Rit VG (1995) Eletroencephalogram and visual evoked potential generation in a mathematical model of coupled cortical columns. Biol Cybern 73:357–366

    Article  CAS  PubMed  Google Scholar 

  • Kim JJ, Lee JW, Lee JJ (2009) Central pattern generator parameter search for a biped walking robot using nonparametric estimation based particles swarm optimization. Int J Control Autom Syst 7(3):447–457

    Article  Google Scholar 

  • Kozma R, Puljic M (2013) Learning effects in coupled arrays of cellular neural oscillators. Cogn Comput 5:164–169

    Article  Google Scholar 

  • Lacquaniti F, Ivanenko YP, Zago M (2012) Patterned control of human locomotion. J Physiol 590(10):2189–2199

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lu Q, Tian J (2014) Synchronization and stochastic resonance of the small-world neural networks based on the CPG. Cogn Neurodyn 8:217–226

    Article  PubMed Central  PubMed  Google Scholar 

  • Lu Q, Li W, Tian J et al (2014) Effects on hypothalamus when CPG is fed back to basal ganglia based on KIV model. Cogn Neurodyn. doi:10.1007/s11571-014-9302-4

    Google Scholar 

  • Matsuoka K (1985) Sustained oscillations generated by mutually inhibiting neurons with adaptation. Biol Cybern 52:367–376

    Article  CAS  PubMed  Google Scholar 

  • Matsuoka K (2011) Analysis of a neural oscillator. Biol Cybern 104:297–304

    Article  PubMed  Google Scholar 

  • Nakajima K, Hauser H, Kang R et al (2013) A soft body as a reservoir: case studies in a dynamic model of octopus-inspired soft robotic arm. Front Comput Neurosci 7(10):3389

    Google Scholar 

  • Nassour J, Henaff P, Benouezdou F et al (2014) Multi-layered multi-pattern CPG for adaptive locomotion of humanoid robots. Biol Cybern 108:291–303

    Article  PubMed  Google Scholar 

  • Pfeifer R, Lungarella M, Iida F (2007) Self-organization, embodiment, and biologically inspired robotics. Science 318:1088–1093

    Article  CAS  PubMed  Google Scholar 

  • Reeves NP, Narendra KS, Cholewicki J (2011) Spine stability: lessons from balancing a stick. Clin Biomech 26(4):325–330

    Article  Google Scholar 

  • Roxin A, Brunel N, Hansel D (2005) Role of delays in shaping spatiotemporal dynamics of neuronal activity in large networks. Phys Rev Lett 94:238103

    Article  PubMed  Google Scholar 

  • Rybak IA, Shevtsova NA, Lafreniere-Roula M et al (2006) Modelling spinal circuitry involved in locomotor pattern generation: insights from deletions during fictive locomotion. J Physiol 577(2):617–639

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sreenvasa M, Soueres P, Laumond JP (2012) Walking to grasp: modeling of human movements as invariants and an application to humanoid robotics. IEEE Trans Syst Man Cybern Part A Syst Hum 42(4):880–893

    Article  Google Scholar 

  • Sumbre G, Gutfreund Y, Fiorito G et al (2001) Control of octopus arm extension by a peripheral motor program. Science 293:1845–1848

    Article  CAS  PubMed  Google Scholar 

  • Taga G (1998) A model of the neuro-musculo-skeletal system for anticipatory adjustment of human locomotion during obstacle avoidance. Biol Cybern 78(1):9–17

    Article  CAS  PubMed  Google Scholar 

  • Tani J, Ito M (2003) Self-organization of behavioral primitives as multiple attractor dynamics: a robot experiment. IEEE Trans Syst Man Cybern Part A Syst Hum 33(4):481–488

    Article  Google Scholar 

  • Ursino M, Cona F, Zavaglia M (2010) The generation of rhythms within a cortical region: analysis of a neural mass model. NeuroImage 52(3):1080–1094

    Article  PubMed  Google Scholar 

  • Wang C, Xu J (2010) Effects of time delay and noise on asymptotic stability in human quiet standing model. Math Probl Eng 2010:829484

    Google Scholar 

  • Windhorst U (2007) Muscle proprioceptive feedback and spinal networks. Brain Res Bull 73:155–202

    Article  CAS  PubMed  Google Scholar 

  • Yekutieli Y, Sagiv-Zohar R, Aharonov R et al (2005a) Dynamic model of the octopus arm. I. Biomechanics of the octopus reaching movement. J Neurophysiol 94:1443–1458

    Article  PubMed  Google Scholar 

  • Yekutieli Y, Sagiv-Zohar R, Hochner B et al (2005b) Dynamic model of the octopus arm. II. Control of reaching movements. J Neurophysiol 94:1459–1468

    Article  PubMed  Google Scholar 

  • Yu J, Tan M, Chen J et al (2014) A survey on CPG-inspired control models and system implementation. IEEE Trans Neural Netw Learn Syst 25(3):441–456

    Article  PubMed  Google Scholar 

  • Zheng Y, Luo J, Harris S et al (2012) Balanced excitation and inhibition: model based analysis of local field potentials. NeuroImage 63(1):81–94

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qiang Lu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, Q. Coupling relationship between the central pattern generator and the cerebral cortex with time delay. Cogn Neurodyn 9, 423–436 (2015). https://doi.org/10.1007/s11571-015-9338-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11571-015-9338-0

Keywords

Navigation