Skip to main content
Log in

Alteration of phase–phase coupling between theta and gamma rhythms in a depression-model of rats

  • Short Communication
  • Published:
Cognitive Neurodynamics Aims and scope Submit manuscript

Abstract

Alterations in oscillatory brain activity are strongly correlated with cognitive performance in various physiological rhythms, especially the theta and gamma rhythms. In this study, we investigated the coupling relationship of neural activities between thalamus and medial prefrontal cortex (mPFC) by measuring the phase interactions between theta and gamma oscillations in a depression model of rats. The phase synchronization analysis showed that the phase locking at theta rhythm was weakened in depression. Furthermore, theta-gamma phase locking at n:m (1:6) ratio was found between thalamus and mPFC, while it was diminished in depression state. In addition, the analysis of coupling direction based on phase dynamics showed that the unidirectional influence from thalamus to mPFC was diminished in depression state only in theta rhythm, while it was partly recovered after the memantine treatment in a depression model of rats. The results suggest that the effects of depression on cognitive deficits are modulated via profound alterations in phase information transformation of theta rhythm and theta-gamma phase coupling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

References

  • Başar E, Güntekin B (2008) A review of brain oscillations in cognitive disorders and the role of neurotransmitters. Brain Res 1235:172–193

    Article  PubMed  Google Scholar 

  • Başar-Eroglu C, Başar E, Demiralp T et al (1992) P300-response: possible psychophysiological correlates in delta and theta frequency channels. A review. Int J Psychophysiol 13:161–179

    Article  PubMed  Google Scholar 

  • Belluscio MA, Mizuseki K, Schmidt R et al (2012) Cross-frequency phase–phase coupling between theta and gamma oscillations in the hippocampus. J Neurosci 32:423–435

    Article  PubMed  CAS  Google Scholar 

  • Bruno RM, Sakmann B (2006) Cortex is driven by weak but synchronously active thalamocortical synapses. Science 312:1622–1627

    Article  PubMed  CAS  Google Scholar 

  • Csicsvari J, Jamieson B, Wise KD et al (2003) Mechanisms of gamma oscillations in the hippocampus of the behaving rat. Neuron 37:311–322

    Article  PubMed  CAS  Google Scholar 

  • Dalley JW, Cardinal RN, Robbins TW (2004) Prefrontal executive and cognitive functions in rodents: neural and neurochemical substrates. Neurosci Biobehav Rev 28:771–784

    Article  PubMed  CAS  Google Scholar 

  • Fell J, Axmacher N (2011) The role of phase synchronization in memory processes. Nat Rev Neurosci 12:105–118

    Article  PubMed  CAS  Google Scholar 

  • Ford JM, Roach BJ, Hoffman RS et al (2008) The dependence of P300 amplitude on gamma synchrony breaks down in schizophrenia. Brain Res 1235:133–142

    Article  PubMed  CAS  Google Scholar 

  • Gallinat J, Kunz D, Senkowski D et al (2006) Hippocampal glutamate concentration predicts cerebral theta oscillations during cognitive processing. Psychopharmacology 187:103–111

    Article  PubMed  CAS  Google Scholar 

  • Mattia M, Sanchez-Vives MV (2011) Exploring the spectrum of dynamical regimes and timescales in spontaneous cortical activity. Cogn Neurodyn 6:239–250

    Article  Google Scholar 

  • Özerdem A, Güntekin B, Tunca Z et al (2008) Brain oscillatory responses in patients with bipolar disorder manic episode before and after valproate treatment. Brain Res 1235:98–108

    Google Scholar 

  • Quan MN, Tian YT, Xu KH et al (2010) Post weaning social isolation influences spatial cognition, prefrontal cortical synaptic plasticity and hippocampal potassium ion channels in Wistar rats. Neuroscience 169:214–222

    Article  PubMed  CAS  Google Scholar 

  • Quan MN, Zhang N, Wang YY et al (2011a) Possible antidepressant effects and mechanisms of memantine in behaviors and synaptic plasticity of a depression rat model. Neuroscience 182:88–97

    Article  PubMed  CAS  Google Scholar 

  • Quan MN, Zheng CG, Zhang N et al (2011b) Impairments of behavior, information flow between thalamus and cortex, and prefrontal cortical synaptic plasticity in an animal model of depression. Brain Res Bull 85:109–116

    Article  PubMed  Google Scholar 

  • Reisberg B, Doody R, Stoffler A et al (2003) Memantine in moderate-to-severe Alzheimer’s disease. N Engl J Med 348:1333–1341

    Article  PubMed  CAS  Google Scholar 

  • Rosenblum MG, Pikovsky AS (2001) Detecting direction of coupling in interacting oscillators. Phys Rev E 64:45202

    Article  CAS  Google Scholar 

  • Rosenblum MG, Pikovsky AS, Kurths J (1996) Phase synchronization of chaotic oscillators. Phys Rev Lett 76:1804–1807

    Article  PubMed  CAS  Google Scholar 

  • Smirnov DA, Andrzejak RG (2005) Detection of weak directional coupling: phase-dynamics approach versus state-space approach. Phys Rev E 71:36207

    Article  Google Scholar 

  • Tariot PN, Farlow MR, Grossberg GT et al (2004) Memantine treatment in patients with moderate to severe Alzheimer disease already receiving donepezil: a randomized controlled trial. JAMA 291:317–324

    Article  PubMed  CAS  Google Scholar 

  • Tass P, Rosenblum MG, Weule J et al (1998) Detection of n:m phase locking from noisy data: application to magnetoencephalography. Phys Rev Lett 81:3291–3294

    Article  CAS  Google Scholar 

  • Weigenand A, Martinetz T, Claussen JC (2012) The phase response of the cortical slow oscillation. Cogn Neurodyn 6:367–375

    Article  Google Scholar 

  • Willner P (1997) Validity, reliability and utility of the chronic mild stress model of depression: a 10-year review and evaluation. Psychopharmacology 134:319–329

    Article  PubMed  CAS  Google Scholar 

  • Xu X, Li Z, Yang Z et al (2012) Decrease of synaptic plasticity associated with alteration of information flow in a rat model of vascular dementia. Neuroscience 206:136–143

    Google Scholar 

  • Yener G, Güntekin B, Öniz A et al (2007) Increased frontal phase-locking of event-related theta oscillations in Alzheimer patients treated with cholinesterase inhibitors. Int J Psychophysiol 64:46–52

    Article  PubMed  CAS  Google Scholar 

  • Zheng C, Quan M, Yang Z et al (2011) Directionality index of neural information flow as a measure of synaptic plasticity in chronic unpredictable stress rats. Neurosci Lett 490:52–56

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the National Natural Science Foundation of China (31171053, 11232005) and Tianjin research program of application foundation and advanced technology (12JCZDJC22300).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tao Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zheng, C., Zhang, T. Alteration of phase–phase coupling between theta and gamma rhythms in a depression-model of rats. Cogn Neurodyn 7, 167–172 (2013). https://doi.org/10.1007/s11571-012-9225-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11571-012-9225-x

Keywords

Navigation