Skip to main content
Log in

Fear conditioning induces guinea pig auditory cortex activation by foot shock alone

  • Research Article
  • Published:
Cognitive Neurodynamics Aims and scope Submit manuscript

Abstract

The present study used an optical imaging paradigm to investigate plastic changes in the auditory cortex induced by fear conditioning, in which a sound (conditioned stimulus, CS) was paired with an electric foot-shock (unconditioned stimulus, US). We report that, after conditioning, auditory information could be retrieved on the basis of an electric foot-shock alone. Before conditioning, the auditory cortex showed no response to a foot-shock presented in the absence of sound. In contrast, after conditioning, the mere presentation of a foot-shock without any sound succeeded in eliciting activity in the auditory cortex. Additionally, the magnitude of the optical response in the auditory cortex correlated with variation in the electrocardiogram (correlation coefficient: −0.68). The area activated in the auditory cortex, in response to the electric foot-shock, statistically significantly had a larger cross-correlation value for tone response to the CS sound (12 kHz) compared to the non-CS sounds in normal conditioning group. These results suggest that integration of different sensory modalities in the auditory cortex was established by fear conditioning.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Acquas E, Wilson C, Fibiger HC (1996) Conditioned and unconditioned stimuli increase frontal cortical and hippocampal acetylcholine release: effects of novelty, habituation, and fear. J Neurosci 16(9):3089–3096

    PubMed  CAS  Google Scholar 

  • Bakin JS, Weinberger NM (1990) Classical conditioning induces CS-specific receptive field plasticity in the auditory cortex of the guinea pig. Brain Res 536:71–286

    Article  Google Scholar 

  • Bakin JS, Weinberger NM (1996) Induction of a physiological memory in the cerebral cortex by stimulation of the nucleus basalis. Proc Natl Acad Sci USA 93:11219–11224

    Article  PubMed  CAS  Google Scholar 

  • Bandrowski AE, Moore SL, Ashe JH (2001) Cholinergic synaptic potentials in the supragranular layers of auditory cortex. Synapse 41:118–130

    Article  PubMed  CAS  Google Scholar 

  • Bieszczad KM, Weinberger NM (2010a) Remodeling the cortex in memory: increased use of a learning strategy increases the representational area of relevant acoustic cues. Neurobiol Learn Mem 94(2):127–144

    Article  PubMed  Google Scholar 

  • Bieszczad KM, Weinberger NM (2010b) Representational gain in cortical area underlies increase of memory strength. Proc Natl Acad Sci USA 107(8):3793–3798

    Article  PubMed  CAS  Google Scholar 

  • Brosch M, Selezneva E, Scheich H (2005) Nonauditory events of a behavioral procedure activate auditory cortex of highly trained monkey. J Neurosci 25(29):6797–6806

    Article  PubMed  CAS  Google Scholar 

  • Butt AE, Chavez CM, Flesher MM, Kinney-Hurd BL, Araujo GC, Miasnikov AA, Weinberger NM (2009) Association learning-dependent increases in acetylcholine release in the rat auditory cortex during auditory classical conditioning. Neurobiol Learn Mem 92(3):400–409

    Article  PubMed  CAS  Google Scholar 

  • Carretta D, Hervé-Minvielle A, Bajo VM, Villa AE, Rouiller EM (1999) c-Fos expression in the auditory pathways related to the significance of acoustic signals in rats performing a sensory-motor task. Brain Res 841(1–2):170–183

    Article  PubMed  CAS  Google Scholar 

  • Cole AE, Nicoll RA (1984) Characterization of a slow cholinergic post-synaptic potential recorded in vitro from rat hippocampal pyramidal cells. J Physiol 352:173–188

    PubMed  CAS  Google Scholar 

  • Edeline JM (1999) Learning-induced physiological plasticity in the thalamo-cortical sensory systems: a critical evaluation of receptive field plasticity, map changes and their potential mechanisms. Prog Neurobiol 57:165–224

    Article  PubMed  CAS  Google Scholar 

  • Edeline JM, Weinberger NM (1992) Associative retuning in the thalamic source of input to the amygdala and auditory cortex: receptive field plasticity in the medial division of the medial geniculate body. Behav Neurosci 106(1):81–105

    Article  PubMed  CAS  Google Scholar 

  • Fu K-MG, Johnston TA, Shah AS, Arnold L, Smiley J, Hackett TA, Garraghty PE, Schroeder CE (2003) Auditory cortical neurons respond to somatosensory stimulation. J Neurosci 23(20):7510–7515

    PubMed  CAS  Google Scholar 

  • Galván VV, Weinberger NM (2002) Long-term consolidation and retention of learning-induced tuning plasticity in the auditory cortex of the guinea pig. Neurobiol Learn Mem 77:78–108

    Article  PubMed  Google Scholar 

  • Golmayo L, Nunez A, Zaborszky L (2003) Electrophysiological evidence for the existence of a posterior cortical–prefrontal–basal forebrain circuitry in modulating sensory responses in visual and somatosensory rat cortical areas. Neuroscience 119:597–609

    Article  PubMed  CAS  Google Scholar 

  • Grinvald A, Lieke EE, Frostig RD, Hildesheim R (1994) Cortical point spread function and long-range lateral interactions revealed by real-time optical imaging of macaque monkey primary visual cortex. J Neurosci 14(5):2545–2568

    PubMed  CAS  Google Scholar 

  • Herrero JL, Roberts MJ, Delicato LS, Giesemann MA, Dayan P, Thiele A (2008) Acetylecholine contributes through muscarinic receptors to attentional modulation in V1. Nature 454:1110–1114

    Article  PubMed  CAS  Google Scholar 

  • Horikawa J, Hosokawa Y, Kubota M, Nasu M, Taniguchi I (1996) Optical imaging of spatiotemporal patterns of glutamatergic excitation and GABAergic inhibition in the guinea-pig. J Physiol 497:629–638

    PubMed  CAS  Google Scholar 

  • Horikawa J, Hess A, Nasu M, Hosokawa Y, Scheich H, Taniguchi I (2001) Optical imaging of neural activity in multiple auditory cortical fields of guinea pigs. NeuroReport 12(15):3335–3339

    Article  PubMed  CAS  Google Scholar 

  • Hosokawa Y, Sugimoto S, Kubota M, Taniguchi I, Horikawa J (2004) Optical imaging of binaural interaction in multiple fields of the guinea pig auditory cortex. NeuroReport 15:1093–1097

    Article  PubMed  Google Scholar 

  • Hui GK, Wong KL, Chavez CM, Leon MI, Robin KM, Weinberger NM (2009) Conditioned tone control of brain reward behavior produces highly specific representational gain in the primary auditory cortex. Neurobiol Learn Mem 92(1):27–34

    Article  PubMed  Google Scholar 

  • Ide Y, Miyazaki T, Lauwereyns J, Sandner G, Tsukada M, Aihara T (2012) Optical imaging of plastic changes induced by fear conditioning in the auditory cortex. Cogn Neurodyn 6(1):1–10

    Article  Google Scholar 

  • Ji W, Suga N (2008) Tone-specific and nonspecific plasticity of the auditory cortex elicited by pseudoconditioning: role of acetylcholine receptors and the somatosensory cortex. J Neurophysiol 100:1384–1396

    Article  PubMed  Google Scholar 

  • Ji W, Suga N, Gao E (2005) Effects of agonists and antagonists of NMDA and ACh receptors on plasticity of bat auditory system elicited by fear conditioning. J Neurophysiol 94:1199–1211

    Article  PubMed  CAS  Google Scholar 

  • Kacelnik O, Nodal FR, Parsons CH, King AJ (2006) Training-induced plasticity of auditory localization in adult mammals. PLoS Biol 4(4):627–638

    Article  CAS  Google Scholar 

  • Kilgard MP, Merzenich MM (1998) Cortical map reorganization enabled by nucleus basalis activity. Science 279:1714–1718

    Article  PubMed  CAS  Google Scholar 

  • King AJ (2006) Auditory neuroscience: activating the cortex without sound. Curr Biol 16:410–411

    Article  Google Scholar 

  • Kraemer DJ, Macrae CN, Green AE, Kelley WM (2005) Musical imagery: sound of silence activates auditory cortex. Nature 434:158

    Article  PubMed  CAS  Google Scholar 

  • Letzkus JJ, Wolff SB, Meyer EM, Tovote P, Courtin J, Herry C, Luthi A (2011) A disinhibitory microcircuit for associative fear learning in the auditory cortex. Nature 480:331–335

    Article  PubMed  CAS  Google Scholar 

  • Lippert TM, Takagaki K, Xu W, Huang X, Wu J-Y (2006) Methods for voltage-sensitive dye imaging of rat cortical activity with high signal-to-noise ratio. J Neurophysiol 98:502–512

    Article  Google Scholar 

  • Ma X, Suga N (2005) Long-term cortical plasticity evoked by electrical stimulation and acetylcholine applied to the auditory cortex. Proc Natl Acad Sci USA 102:9335–9340

    Article  PubMed  CAS  Google Scholar 

  • Rasmusson DD (2000) The role of acetylcholine in cortical synaptic plasticity. Behav Brain Res 115:205–218

    Article  PubMed  CAS  Google Scholar 

  • Read HL, Winer JA, Schreiner CE (2002) Functional architecture of auditory cortex. Curr Opin Neurobiol 12:433–440

    Article  PubMed  CAS  Google Scholar 

  • Recanzone GH, Schreiner CE, Merzenich MM (1993) Plasticity in the frequency representation of primary auditory cortex following discrimination training in adult owl monkeys. J Neurosci 13(1):87–103

    PubMed  CAS  Google Scholar 

  • Rutkowski RG, Weinberger NM (2005) Encoding of learned importance of sound by magnitude of representational area in primary auditory cortex. Proc Natl Acad Sci USA 102:13664–13669

    Article  PubMed  CAS  Google Scholar 

  • Shibuki K, Hamamura M, Yagi K (1984) Conditioned heart rate response: testing under anesthesia in rats. Neurosci Res 1:373–378

    Article  PubMed  CAS  Google Scholar 

  • Storozhuk VM, Khorevin VI, Razumna NN, Tetko IV, Villa AP (2003) The effects of activation of glutamate ionotropic connections of neurons in the sensorimotor cortex in a conditioned reflex. Neurosci Behav Physiol 33(5):479–488

    Article  PubMed  CAS  Google Scholar 

  • Suga N (2008) The neural circuit for tone-specific plasticity in the auditory system elicited by conditioning. Learn Mem 15:198–201

    Article  PubMed  Google Scholar 

  • Villa AE, Bajo Lorenzana VM, Vantini G (1996) Nerve growth factor modulates information processing in the auditory thalamus. Brain Res Bull 39(3):139–147

    Article  PubMed  CAS  Google Scholar 

  • Villa AE, Tetko IV, Dutoit P, De Ribaupierre Y, De Ribaupierre F (1999) Corticofugal modulation of functional connectivity within the auditory thalamus of rat, guinea pig and cat revealed by cooling deactivation. J Neurosci Methods 86(2):161–178

    Article  PubMed  CAS  Google Scholar 

  • Voisin J, Bidet-Caulet A, Bertrand O, Fonlupt P (2006) Listening in silence activates auditory areas: a functional magnetic resonance imaging study. J Neurosci 26:273–278

    Article  PubMed  CAS  Google Scholar 

  • Weinberger NM, Bakin JS (1998) Learning-induced physiological memory in adult primary auditory cortex: receptive field plasticity, model, and mechanisms. Audiol Neuro Otol 3:145–167

    Article  CAS  Google Scholar 

  • Zatorre RJ, Halpern AR (2005) Mental concerts: musical imagery and auditory cortex. Neuron 47:9–12

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the 21st Century Center of Excellence (COE) Program and the Global COE Program at Tamagawa University and Grants-in-Aid for Scientific Research (A) 19200014, Grants-in-Aid for Young Scientists (B) 21700435 and Grants-in-Aid for Scientific Research on Innovative Areas 21120006 from the Ministry of Education, Culture, Sports, Science and Technology of Japan.

We are grateful to H. Fujii for useful advice and discussion.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yoshinori Ide.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ide, Y., Takahashi, M., Lauwereyns, J. et al. Fear conditioning induces guinea pig auditory cortex activation by foot shock alone. Cogn Neurodyn 7, 67–77 (2013). https://doi.org/10.1007/s11571-012-9224-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11571-012-9224-y

Keywords

Navigation