Skip to main content
Log in

The neural binding problem(s)

  • Review Article
  • Published:
Cognitive Neurodynamics Aims and scope Submit manuscript

The binding problem is one of a number of terms at the interface between neuroscience and philosophy which suffer from being used in several different ways, often in a context that does not explicitly indicate which way the term is being used. Wikipedia, June 2012.

Abstract

The famous Neural Binding Problem (NBP) comprises at least four distinct problems with different computational and neural requirements. This review discusses the current state of work on General Coordination, Visual Feature-Binding, Variable Binding, and the Subjective Unity of Perception. There is significant continuing progress, partially masked by confusing the different versions of the NBP.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Barlow HB (1986) Why have multiple cortical areas? Vision Res 26:81–90

    Article  PubMed  CAS  Google Scholar 

  • Barrett L, Feldman JA, Mac Dermed L (2008) A (somewhat) new solution to the binding. Neural Comput 20:2361–2378

    Article  PubMed  Google Scholar 

  • Bouvier S, Treisman A (2010) Visual feature binding requires reentry. Psychol Sci 21:200–204

    Article  PubMed  Google Scholar 

  • Bressler SL, Scott Kelso JA (2001) Cortical coordination dynamics and cognition. Trends Cogn Sci 5(1):26–36

    Article  PubMed  Google Scholar 

  • Brockmole JR, Franconeri SL (eds) (2009) Binding. Visual Cogn 17(1–2):1–292

    Google Scholar 

  • Browne A, Sun R (2000) Connectionist variable binding. Springer, Heidelberg

    Google Scholar 

  • Canolty RT, Ganguly K, Kennerley SW, Cadieu CF, Koepsell K, Wallis JD, Carmena JM (2010) Oscillatory phase coupling coordinates anatomically-dispersed functional cell assemblies. Proc Natl Acad Sci USA 107:17356–17361

    Article  PubMed  CAS  Google Scholar 

  • Cer DM, O’Reilly RC (2006) Neural mechanisms of binding in the hippocampus and neocortex: insights from computational models. In: Zimmer HD, Mecklinger A, Lindenberger U (eds) Handbook of binding and memory: perspectives from cognitive neuroscience. Oxford U Press, Oxford

    Google Scholar 

  • Chalmers D (1996) The conscious mind: in search of a fundamental theory. Oxford U Press, Oxford

    Google Scholar 

  • Chikkerur SS, Serre T, Tan C, Poggio T (2010) What and where: a Bayesian inference theory of attention. Vision Res 50:2233–2247. doi:10.1016/j.visres.2010.05.13

    Article  PubMed  Google Scholar 

  • Di Lollo V (2012) The feature-binding problem is an ill-posed problem. Trends Cogn Sci 16(6):317–321

    Article  PubMed  Google Scholar 

  • Engel AK, Singer W (2001) Temporal binding and the neural correlates of sensory awareness. Trends Cogn Sci 5:16–25

    Article  PubMed  Google Scholar 

  • Feldman JA (2006) From molecule to metaphor: a neural theory of language. MIT Press, Cambridge

    Google Scholar 

  • Feldman JA (2010) Ecological expected utility and the mythical neural code. Cogn Neurodyn 4:25–35

    Article  PubMed  Google Scholar 

  • Fries P (2009) Neuronal gamma-band synchronization as a fundamental process in cortical computation. Annu Rev Neurosci 32:209–224

    Article  PubMed  CAS  Google Scholar 

  • Hayhoe M, Rothkopf CA (2011) Vision in the natural world. Wiley Interdisciplinary Reviews: Cognitive Science 2:158–166

    Article  Google Scholar 

  • Hollingworth A, Rasmussen IP (2010) Binding objects to locations: the relationship between object files and visual working memory. J Exp Psychol Hum Percept Perform 36:543–564

    Article  PubMed  Google Scholar 

  • Hummel JE (2011) Getting symbols out of a neural architecture. Connect Sci 23:109–118

    Article  Google Scholar 

  • Hummel JE, Holyoak KJ, Green C et al (2004) A solution to the binding problem for compositional connectionism. In: Levy SD, Gayler R (eds) Compositional connectionism in cognitive science: papers from the AAAI fall symposium, AAAI Press, Menlo Park

  • Humphreys GW (2003) Conscious visual representations built from multiple binding processes: evidence from neuropsychology. Prog Brain Res 142:243–255

    Article  PubMed  Google Scholar 

  • Jackendoff R (2002) Foundations of language. Oxford U Press, Oxford

    Book  Google Scholar 

  • Kaas J (1997) Topographic maps are fundamental to sensory processing. Brain Res Bull 44:107–112

    Article  PubMed  CAS  Google Scholar 

  • Kaas JH, Collins CE (eds) (2003) The primate visual system. CRC Press, Boca Raton

    Google Scholar 

  • Karlsen PJ, Allen RJ, Baddeley AD, Hitch GJ (2010) Binding across space and time in visual working memory. Memory Cogn 38:292–303

    Article  Google Scholar 

  • Lennie P (1998) Single units and visual cortical organization. Perception 27:889–935

    Article  PubMed  CAS  Google Scholar 

  • Mack A (2003) Inattentional blindness: looking without seeing. Curr Direct Psychol Sci 12:180–184

    Article  Google Scholar 

  • Martinez-Conde S, Krauzlis R, Miller J, Morron C, Williams D, Kowler E (2008) Eye movements and the perception of a clear and stable visual world. J Vision 8(14):1. doi:10.1167/8.14.i

    Article  Google Scholar 

  • Morita M, Morokami S, Morita H (2010) Attribute pair-based visual recognition and memory. PLoS One 5:e9571. doi:10.1371/journal.pone.0009571

    Article  PubMed  Google Scholar 

  • Reynolds JH, Desimone R (1999) The role of neural mechanisms of attention in solving the binding problem. Neuron 24(19–29):111–125

    Google Scholar 

  • Serre T, Oliva A, Poggio T (2007) A feedforward architecture accounts for rapid categorization. Proc Natl Acad Sci USA 104:6424–6429

    Article  PubMed  CAS  Google Scholar 

  • Seymour K, Clifford CW, Logothetis NK, Bartels A (2009) The coding of colour, motion and their conjunction in human visual cortex. Curr Biol 19:177–183

    Article  PubMed  CAS  Google Scholar 

  • Shadlen MN, Movshon JA (1999) Synchrony unbound: a critical evaluation of the temporal binding hypothesis. Neuron 24:67–77

    Article  PubMed  CAS  Google Scholar 

  • Shafritz KM, Gore JC, Marois R (2002) The role of the parietal cortex in visual feature binding. Proc Natl Acad Sci USA 99:10917–10922

    Article  PubMed  CAS  Google Scholar 

  • Shastri L (2002) Episodic memory and cortico-hippocampal interactions. Trends Cogn Sci 6:162–168

    Article  PubMed  Google Scholar 

  • Shastri L, Ajjanagadde V (1993) From simple associations to systematic reasoning. Behav Brain Sci 16:417–494

    Article  Google Scholar 

  • Simons DJ, Rensink RA (2005) Change blindness: past, present, and future. Trends Cog Sci 9:16–20

    Article  Google Scholar 

  • Sommer FT (2013) Neural oscillations and synchrony as a mechanism for coding, communication and computation in the visual system. In: Werner JS, Chalupa LM (eds) The new visual neurosciences. MIT Press, Cambridge (in press)

  • Treisman A (1999) Solutions to the binding problem: progress through controversy and convergence. Neuron 24:105–125

    Article  PubMed  CAS  Google Scholar 

  • van der Velde F, de Kamps M (2006) Neural blackboard architectures of combinatorial structures in cognition. Behav Brain Sci 29:37–70

    PubMed  Google Scholar 

  • Velik R (2010) From single neuron-firing to consciousness–towards the true solution of the binding problem. Neurosci Biobehav Rev 34:993–1001

    Article  PubMed  Google Scholar 

  • von der Malsburg C (1981) The correlation theory of brain function. MPI Biophysical chemistry report, pp 81–2

  • von der Malsburg C, Phillips WA, Singer W (2009) Ernst Struengmann Forum, Frankfurt Am Main, Germany. MIT Press, Cambridge

  • Vroomen J, Keetels M (2010) Perception of intersensory synchrony: a tutorial review. Atten Percept Psychophys 72:871–884

    Article  PubMed  Google Scholar 

  • Wendelken C, Shastri L (2004) Multiple instantiation and rule mediation in SHRUTI. Connect Sci 16:211–217

    Article  Google Scholar 

  • Whitney D (2009) Neuroscience: toward unbinding the binding problem. Curr Biol 19:251–253

    Article  Google Scholar 

  • Wang R, Zhang, Z, Tse CK et al (2011) Neural coding in networks of multi-populations of neural oscillators. Math Comput Simul. doi:10.1016/j.matcom.2010.10.029

  • Zhang X, Wang R, Zhang Z (2010) Dynamic phase synchronization characteristics of variable high-order coupled neuronal oscillator population. Neurocomputing 73:2665–2670

    Google Scholar 

  • Zimmer HD, Mecklinger A, Lindenberger U (eds) (2006) Handbook of binding and memory: perspectives from cognitive neuroscience. Oxford U Press, Oxford

    Google Scholar 

  • Zipser D, Andersen RA (1988) A back-propagation programmed network that simulates response properties of a subset of posterior parietal neurons. Nature 331:679–684. doi:10.1038/331679a0

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported in part by the Office of Naval Research #N000141110416 and the John Templeton Foundation #20631. Very useful suggestions were made by Stan Klein, Christof von der Malsburg, Bill Phillips, Lokendra Shastri, Carter Wendelken, and the referees.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jerome Feldman.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Feldman, J. The neural binding problem(s). Cogn Neurodyn 7, 1–11 (2013). https://doi.org/10.1007/s11571-012-9219-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11571-012-9219-8

Keywords

Navigation