Skip to main content
Log in

Desynchronizing effect of high-frequency stimulation in a generic cortical network model

  • Research Article
  • Published:
Cognitive Neurodynamics Aims and scope Submit manuscript

Abstract

Transcranial electrical stimulation (TCES) and deep brain stimulation are two different applications of electrical current to the brain used in different areas of medicine. Both have a similar frequency dependence of their efficiency, with the most pronounced effects around 100 Hz. We apply superthreshold electrical stimulation, specifically depolarizing DC current, interrupted at different frequencies, to a simple model of a population of cortical neurons which uses phenomenological descriptions of neurons by Izhikevich and synaptic connections on a similar level of sophistication. With this model, we are able to reproduce the optimal desynchronization around 100 Hz, as well as to predict the full frequency dependence of the efficiency of desynchronization, and thereby to give a possible explanation for the action mechanism of TCES.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Acebrón JA, Bonilla LL, Vicente CJP, Ritort F, Spigler R (2005) The Kuramoto model: a simple paradigm for synchronization phenomena. Rev Mod Phys 77:137–185

    Article  Google Scholar 

  • Ananthanarayanan R, Modha DS (2007) Anatomy of a cortical simulator. In: Supercomputing 07: Proceedings of the ACM/IEEE SC2007 conference on high performance networking and computing. Association for Computing Machinery, New York

  • Anderson TR, Hu B, Iremonger K, Kiss ZHT (2006) Selective attenuation of afferent synaptic transmission as a mechanism of thalamic deep brain stimulation-induced tremor arrest. J Neurosci 26(3):841–850

    Article  PubMed  CAS  Google Scholar 

  • Antal A, Kincses TZ, Nitsche MA, Bartfai O, Paulus W (2004a) Excitability changes induced in the human primary visual cortex by transcranial direct current stimulation: direct electrophysiological evidence. Invest Ophtal Vis Sci 45:702–707

    Article  Google Scholar 

  • Antal A, Nitsche MA, Kincses TZ, Kruse W, Hoffmann KP, Paulus W (2004b) Facilitation of visuo-motor learning by transcranial direct current stimulation of the motor and extrastriate visual areas in humans. Eur J Neurosci 19(10):2888–2892

    Article  PubMed  Google Scholar 

  • Bellinger SC, Miyazawa G, Steinmetz PN (2008) Submyelin potassium accumulation may functionally block subsets of local axons during deep brain stimulation: a modeling study. J Neural Eng 5:263–274

    Article  PubMed  CAS  Google Scholar 

  • Benabid A, Pollak P, Gross C, Hoffmann D, Benazzouz A, Gao D, Laurent A, Gentil M, Perret J (1994) Acute and long-term effects of subthalamic nucleus stimulation in Parkinson’s disease. Stereotact Funct Neurosurg 62:76–84

    Article  PubMed  CAS  Google Scholar 

  • Benabid AL, Pollak P, Gao D, Hoffmann D, Limousin P, Gay E, Payen I, Benazzouz A (1996) Chronic electrical stimulation of the ventralis intermedius nucleus of the thalamus as a treatment of movement disorders. J Neurosurg 84(2):203–214

    Google Scholar 

  • Börgers C, Kopell N (2003) Synchronization in networks of excitatory and inhibitory neurons with sparse. Random Connect Neural Comp 15:509–538

    Google Scholar 

  • Compte A, Sanchez-Vivez MV, McCormick DA, Wang X-J (2003) Cellular and network mechanisms of slow oscillatory activity (<1Hz) and wave propagations in a cortical network model. J Neurophysiol 89:2707–2725

    Article  PubMed  Google Scholar 

  • Coubes P, Roubertie A, Vayssiere N, Hemm S, Echenne B (2000) Treatment of DYT1-generalised dystonia by stimulation of the internus globus pallidus. Lancet 355:2220–2221

    Article  PubMed  CAS  Google Scholar 

  • Gang L, Chao Y, Ling L, Lu SC-Y (2005) Uncovering the mechanism(s) of deep brain stimulation. J Phys Conf Ser 13:336–344

    Article  Google Scholar 

  • Garcia L, Audin J, D’Alessandro G, Bioulaxc B, Hammond C (2003) Dual effect of high-frequency stimulation on subthalamic neuron activity. J Neurosci 23(25):8743–8751

    PubMed  CAS  Google Scholar 

  • Geyer JD, Talathi S, Carney PR (2009) Introduction to sleep and polysomnography. In: John L, Greenfield JR, Geyer JD, Carney PR (eds) Reading EEGs: a practical approach, Lippincott Williams & Wilkins, Philadelphia

    Google Scholar 

  • Gupta A, Wang Y, Markram H (2000) Organizing principle for a diversity of GABAergic interneurons and synapses in the neocortex. Science 287:273–278

    Article  PubMed  CAS  Google Scholar 

  • Hauptmann C, Tass PA (2010) Restoration of segregated, physiological neuronal connectivity by desynchronizing stimulation. J Neural Eng 7:056008

    Google Scholar 

  • Houeto JL, Karachi C, Mallet L, Pillon B, Yelnik J, Mesnage V, Welter ML, Navarro S, Pelissolo A, Damier P, Pidoux B, Dormont D, Cornu P, Agid Y (2005) Tourettes syndrome and deep brain stimulation. J Neurol Neurosurg Psychiatry 76:992–995

    Article  PubMed  CAS  Google Scholar 

  • Izhikevich EM (2003) Simple model of spiking neurons. IEEE Trans Neural Netw 14(6):1569–1572

    Article  PubMed  CAS  Google Scholar 

  • Izhikevich EM (2004) Which model to use for cortical spiking neurons?. IEEE Trans Neural Netw 15:1063–1070

    Article  PubMed  Google Scholar 

  • Izhikevich EM (2006) Polychronization: computation with spikes. Neural Comput 18:245–282

    Article  PubMed  Google Scholar 

  • Izhikevich EM, Gally JA, Edelman GM (2004) Spike-timing dynamics of neuronal groups. Cereb Cortex 14:933–944

    Article  PubMed  Google Scholar 

  • Jensen AL, Durand DM (2007) Suppression of axonal conduction by sinusoidal stimulation in rat hippocampus in vitro. J Neural Eng 4:116

    Google Scholar 

  • Kumar R, Dagher A, Hutchison WD, Lang AE, Lozano AM (1999) Globus pallidus deep brain stimulation for generalized dystonia: clinical and PET investigation. Neurology 53:871

    Article  PubMed  CAS  Google Scholar 

  • Kuramoto Y (1975) In: Araki H (ed) International symposium on mathematical problems in theoretical physics. Lecture Notes in Physics, vol 30. Springer, New York, p 420

  • Lian J, Shuai J, Durand DM (2004) Control of phase synchronization of neuronal activity in the rat hippocampus. J Neural Eng 1:46–54

    Article  PubMed  Google Scholar 

  • Limoge A (1975) An introduction to electroanaesthesia. University Park Press, Baltimore

    Google Scholar 

  • Limoge A, Robert C, Stanley TH (1999) Transcutaneous cranial electrical stimulation (TCES): a review 1998. Neurosci Biobehav Rev 23:529–538

    Article  PubMed  CAS  Google Scholar 

  • Liu Y, Wang R, Zhang Z, Jiao X (2010) Analysis on stability of neural network in the presence of inhibitory neurons. Cogn Neurodyn 4(1):61–68

    Article  PubMed  Google Scholar 

  • Markram H, Wang Y, Tsodyks M (1998) Differential signaling via the same axon of neocortical pyramidal neurons. Proc Natl Acad Sci 95:5323–5328

    Article  PubMed  CAS  Google Scholar 

  • McIntyre CC, Savasta M, Kerkerian-Le Groff L, Vitek JL (2004) Uncovering the mechanism(s) of action of deep brain stimulation: activation, inhibition, or both. Clin Neurophys 115:1239–1248

    Article  Google Scholar 

  • Nuttin B, Gabriëls LA, Cosyns PR, Meyerson BA, Andrewitch S, Sunaert S, Maes A, Dupont P, Gybels JM, Gielen F, Demeulemeester HG (2003) Long-term electrical capsular stimulation in patients with obsessive-compulsive disorder. Neurosurgery 52(6):1263–1272

    Article  PubMed  Google Scholar 

  • Obesó JA, Olanow CW, Rodriguez-Oroz MC, Krack P, Kumar R, Lang AE (2001) Deep-brain stimulation of the subthalamic nucleus or the pars interna of the globus pallidus in Parkinson’s disease. N Engl J Med 345:956–963

    Article  Google Scholar 

  • Pikovsky AS, Rosenblum MG, Osipov GV, Kurths J (1997) Phase synchronization of chaotic oscillators by external driving. Phys D 104:219–238

    Article  Google Scholar 

  • Ressler KJ, Mayberg HS (2007) Targeting abnormal neural circuits in mood and anxiety disorders: from the laboratory to the clinic. Nat Neurosci 10(9):1116–1124

    Article  PubMed  CAS  Google Scholar 

  • Sances A Jr, Larson SJ (1975) Electroanesthesia—biomedical and biophysical studies. Academic Press, New York

    Google Scholar 

  • Schöll E, Hiller G, Hövel P, Dahlem MA (2009) Time-delayed feedback in neurosystems. Phil Trans R Soc A 367(1891):1079–1096

    Article  PubMed  Google Scholar 

  • Steriade M, Timofeev I, Grenier F (2001) Natural waking and sleeping states: a view from inside neocortical neurons. J Neurophysiol 85:1969–1985

    PubMed  CAS  Google Scholar 

  • Su Y, Radman T, Vaynsteyn J, Parra LC, Biksom M (2008) Effects of high-freqency stimulation on epileptiform activity in vitro: ON/OFF control paradigm. Epilepsia 49:1586–1593

    Article  PubMed  Google Scholar 

  • Velasco F, Velasco M, Velasco A, Jimenez F, Marquez I, Rise M (1995) Electrical stimulation of the centralmedian thalamic nucleus in control of seizures: long-term studies. Epilepsia 36:63–71

    Article  PubMed  CAS  Google Scholar 

  • Visser-Vandewalle V (2007) DBS in Tourette syndrome: rationale, current status and future prospects. Acta Neurochir Suppl 97(2):215–222

    Article  PubMed  CAS  Google Scholar 

  • Wang R, Zhang Z (2011) Phase synchronization motion and neural coding in dynamic transmission of neural information. IEEE Trans Neural Netw 22(7):1097–1106

    Article  PubMed  Google Scholar 

  • Yianni J, Bain P, Giladi N, Auca M, Gregory R, Joint C, Nandi Dm, Stein J, Scott R, Aziz T (2003) Globus pallidus internus deep brain stimulation for dystonic conditions: a prospective audit. Mov Disord 18:436–442

    Article  PubMed  Google Scholar 

  • Zaghi S, Acar M, Hultgren B, Boggio PS, Fregni F (2009) Non-invasive brain stimulation with low intensity electrical currents: putative mechanisms of action of direct and alternating current stimulation. Neuroscientist (in press)

  • Zhang X, Wang R, Zhang Z (2010) Dynamic phase synchronization characteristics of variable high-order coupled neuronal oscillator population. Neurocomputing. 73:2665–2670

    Article  Google Scholar 

Download references

Acknowledgments

Financial support by the Deutsche Forschungsgemeinschaft (DFG SFB-654 project A8 and Graduate School for Computing in Medicine and Life Science) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jens Christian Claussen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schütt, M., Claussen, J.C. Desynchronizing effect of high-frequency stimulation in a generic cortical network model. Cogn Neurodyn 6, 343–351 (2012). https://doi.org/10.1007/s11571-012-9199-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11571-012-9199-8

Keywords

Navigation