Skip to main content
Log in

Exploring the spectrum of dynamical regimes and timescales in spontaneous cortical activity

  • Research Article
  • Published:
Cognitive Neurodynamics Aims and scope Submit manuscript

Abstract

Rhythms at slow (<1 Hz) frequency of alternating Up and Down states occur during slow-wave sleep states, under deep anaesthesia and in cortical slices of mammals maintained in vitro. Such spontaneous oscillations result from the interplay between network reverberations nonlinearly sustained by a strong synaptic coupling and a fatigue mechanism inhibiting the neurons firing in an activity-dependent manner. Varying pharmacologically the excitability level of brain slices we exploit the network dynamics underlying slow rhythms, uncovering an intrinsic anticorrelation between Up and Down state durations. Besides, a non-monotonic change of Down state duration is also observed, which shrinks the distribution of the accessible frequencies of the slow rhythms. Attractor dynamics with activity-dependent self-inhibition predicts a similar trend even when the system excitability is reduced, because of a stability loss of Up and Down states. Hence, such cortical rhythms tend to display a maximal size of the distribution of Up/Down frequencies, envisaging the location of the system dynamics on a critical boundary of the parameter space. This would be an optimal solution for the system in order to display a wide spectrum of dynamical regimes and timescales.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Amit DJ (1989) Modeling brain function: the world of attractor neural networks. Cambridge university press, Cambridge

    Google Scholar 

  • Amit DJ, Brunel N (1997) Model of global spontaneous activity and local structured activity during delay periods in the cerebral cortex. Cereb Cortex 7(3):237–252

    Article  PubMed  CAS  Google Scholar 

  • Amit DJ, Tsodyks M (1991) Quantitative study of attractor neural network retrieving at low spike rates: I. substrate—spikes, rates and neuronal gain. Network 2:259–273

    Article  Google Scholar 

  • Beggs JM (2008) The criticality hypothesis: how local cortical networks might optimize information processing. Philos Transact A Math Phys Eng Sci 366(1864):329–343

    Article  PubMed  Google Scholar 

  • Bertschinger N, Natschläger T (2004) Real-time computation at the edge of chaos in recurrent neural networks. Neural Comput 16(7):1413–1436

    Article  PubMed  Google Scholar 

  • Braitenberg V, Schüz A (1991) Anatomy of the cortex: statistics and geometry. Springer, Berlin

    Google Scholar 

  • Braun J, Mattia M (2010) Attractors and noise: twin drivers of decisions and multistability. Neuroimage 52(3):740–751

    Article  PubMed  Google Scholar 

  • Brunel N, Hakim V (1999) Fast global oscillations in networks of integrate-and-fire neurons with low firing rates. Neural Comput 11:1621–1671

    Article  PubMed  CAS  Google Scholar 

  • Burkitt AN (2006) A review of the integrate-and-fire neuron model: I. Homogeneous synaptic input. Biol Cybern 95:1–19

    Article  PubMed  CAS  Google Scholar 

  • Compte A, Sanchez-Vives MV, McCormick DA, Wang X-J (2003) Cellular and network mechanisms of slow oscillatory activity (<1 Hz) and wave propagations in a cortical network model. J Neurophysiol 89(5):2707–2725

    Article  PubMed  Google Scholar 

  • Cossart R, Aronov D, Yuste R (2003) Attractor dynamics of network UP states in the neocortex. Nature 423(6937):283–288

    Article  PubMed  CAS  Google Scholar 

  • Curto C, Sakata S, Marguet S, Itskov V, Harris KD (2009) A simple model of cortical dynamics explains variability and state dependence of sensory responses in urethane-anesthetized auditory cortex. J Neurosci 29(34):10600–10612

    Article  PubMed  CAS  Google Scholar 

  • Deco G, Rolls ET (2005) Synaptic and spiking dynamics underlying reward reversal in the orbitofrontal cortex. Cereb Cortex 15(1):15–30

    Article  PubMed  Google Scholar 

  • Deco G, Martí D, Ledberg A, Reig R, Sanchez-Vives MV (2010) Effective reduced diffusion-models: a data driven approach to the analysis of neuronal dynamics. PLoS Comput Biol 5(12):e1000587

    Article  Google Scholar 

  • Destexhe A, Hughes SW, Rudolph M, Crunelli V (2007) Are corticothalamic ‘up’ states fragments of wakefulness? Trends Neurosci 30(7):334–342

    Article  PubMed  CAS  Google Scholar 

  • Durstewitz D, Deco G (2008) Computational significance of transient dynamics in cortical networks. Eur J Neurosci 27(1):217–227

    Article  PubMed  Google Scholar 

  • Fusi S, Mattia M (1999) Collective behaviour of networks with linear (VLSI) integrate-and-fire neurons. Neural Comput 11:633–652

    Article  PubMed  CAS  Google Scholar 

  • Gigante G, Mattia M, Del Giudice P (2007) Diverse population-bursting modes of adapting spiking neurons. Phys Rev Lett 98:148101

    Article  PubMed  Google Scholar 

  • Giugliano M, Darbon P, Arsiero M, Lüscher HR, Streit J (2004) Single-neuron discharge properties and network activity in dissociated cultures of neocortex. J Neurophysiol 92(2):977–996

    Article  PubMed  CAS  Google Scholar 

  • Harris KD, Bartho P, Chadderton P, Curto C, de la Rocha J, Hollender L, Itskov V, Luczak A, Marguet SL, Renart A, Sakata S (2010) How do neurons work together? Lessons from auditory cortex. Hear Res 271(1–2):37–53

    PubMed  Google Scholar 

  • Holcman D, Tsodyks M (2006) The emergence of Up and Down states in cortical networks. PLoS Comput Biol 2(3):e23

    Article  PubMed  Google Scholar 

  • Hopfield JJ (1982) Neural networks and physical systems with emergent collective computational abilities. Proc Natl Acad Sci USA 79(8):2554–2558

    Article  PubMed  CAS  Google Scholar 

  • Koulakov AA, Raghavachari S, Kepecs A, Lisman JE (2002) Model for a robust neural integrator. Nat Neurosci 5(8):775–782

    Article  PubMed  CAS  Google Scholar 

  • La Camera G, Giugliano M, Senn W, Fusi S (2008) The response of cortical neurons to in vivo-like input current: theory and experiment : I. Noisy inputs with stationary statistics. Biol Cybern 99:279–301

    Article  PubMed  Google Scholar 

  • Langton C (1990) Computation at the edge of chaos: phase transitions and emergent computation. Physica D 42(1–3):12–37

    Article  Google Scholar 

  • Latham PE, Richmond BJ, Nelson PG, Nirenberg S (2000) Intrinsic dynamics in neuronal networks. I. Theory. J Neurophysiol 83(2):808–827

    PubMed  CAS  Google Scholar 

  • Lau P-M, Bi G-Q (2005) Synaptic mechanisms of persistent reverberatory activity in neuronal networks. Proc Natl Acad Sci USA 102(29):10333–10338

    Article  PubMed  CAS  Google Scholar 

  • Luczak A, Barthó P, Harris KD (2009) Spontaneous events outline the realm of possible sensory responses in neocortical populations. Neuron 62(3):413–425

    Article  PubMed  CAS  Google Scholar 

  • Machens CK, Romo R, Brody CD (2005) Flexible control of mutual inhibition: a neural model of two-interval discrimination. Science 307(5712):1121–1124

    Article  PubMed  CAS  Google Scholar 

  • Martí D, Deco G, Mattia M, Gigante G, Del Giudice P (2008) A fluctuation-driven mechanism for slow decision processes in reverberant networks. PLoS One 3(7):e2534

    Article  PubMed  Google Scholar 

  • Mattia M, Del Giudice P (2000) Efficient event-driven simulation of large networks of spiking neurons and dynamical synapses. Neural Comput 12(10):2305–2329

    Article  PubMed  CAS  Google Scholar 

  • Mattia M, Del Giudice P (2002) Population dynamics of interacting spiking neurons. Phys Rev E 66:051917

    Article  Google Scholar 

  • Mejias JF, Kappen HJ, Torres JJ (2010) Irregular dynamics in up and down cortical states. PLoS One 5(11):e13651

    Article  PubMed  Google Scholar 

  • Ngo H-VV, Köhler J, Mayer J, Claussen JC, Schuster HG (2010) Triggering up states in all-to-all coupled neurons. Europhys Lett 89:68002

    Article  Google Scholar 

  • Reig R, Mattia M, Compte A, Belmonte C, Sanchez-Vives MV (2010) Temperature modulation of slow and fast cortical rhythms. J Neurophysiol 103:1253–1261

    Article  PubMed  CAS  Google Scholar 

  • Renart A, Brunel N, Wang X-J (2003) Mean-field theory of irregularly spiking neuronal populations and working memory in recurrent cortical networks. In: Feng J (ed) Computational neuroscience: a comprehensive approach. CRC Press, Boca Raton

    Google Scholar 

  • Risken H (1989) The Fokker-Planck equation: methods of solution and applications, 2nd edn. Springer, Berlin

    Book  Google Scholar 

  • Sanchez-Vives MV, McCormick DA (2000) Cellular and network mechanisms of rhythmic recurrent activity in neocortex. Nat Neurosci 3:1027–1034

    Article  PubMed  CAS  Google Scholar 

  • Sanchez-Vives MV, Descalzo VF, Reig R, Figueroa NA, Compte A, Gallego R (2008) Rhythmic spontaneous activity in the piriform cortex. Cereb Cortex 18(5):1179–1192

    Article  PubMed  Google Scholar 

  • Sanchez-Vives MV, Mattia M, Compte A, Perez-Zabalza M, Winograd M, Descalzo VF, Reig R (2010) Inhibitory modulation of cortical up states. J Neurophysiol 104:1314–1324

    Article  PubMed  Google Scholar 

  • Sasaki T, Matsuki N, Ikegaya Y (2007) Metastability of active CA3 networks. J Neurosci 27(3):517–528

    Article  PubMed  CAS  Google Scholar 

  • Shu Y, Hasenstaub A, McCormick DA (2003) Turning on and off recurrent balanced cortical activity. Nature 423(6937):288–293

    Article  PubMed  CAS  Google Scholar 

  • Spiridon M, Gerstner W (1999) Noise spectrum and signal transmission through a population of spiking neurons. Network 12:409–421

    Google Scholar 

  • Steriade M, Nunez A, Amzica F (1993) A novel slow (<1 Hz) oscillation of neocortical neurons in vivo: depolarizing and hyperpolarizing components. J Neurosci 13(8):3252–3265

    PubMed  CAS  Google Scholar 

  • Tsuda I (2002) Toward an interpretation of dynamic neural activity in terms of chaotic dynamical systems. Behav Brain Sci 24(5):793–810

    Article  Google Scholar 

  • van Vreeswijk C, Hansel D (2001) Patterns of synchrony in neural networks with spike adaptation. Neural Comput 13(5):959–992

    Article  PubMed  Google Scholar 

  • Wang XJ (2002) Probabilistic decision making by slow reverberation in cortical circuits. Neuron 36(5):955–968

    Article  PubMed  CAS  Google Scholar 

  • Zipser D, Kehoe B, Littlewort G, Fuster J (1993) A spiking network model of short-term active memory. J Neurosci 13(8):3406–3420

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We want to thank M. Perez-Zabalza, V.F. Descalzo and R. Reig for their contribution. This work was supported by a Ministerio de Ciencia e Innovación (MICINN) grant (BFU2008-01371/BFI) to MVSV.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maurizio Mattia.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mattia, M., Sanchez-Vives, M.V. Exploring the spectrum of dynamical regimes and timescales in spontaneous cortical activity. Cogn Neurodyn 6, 239–250 (2012). https://doi.org/10.1007/s11571-011-9179-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11571-011-9179-4

Keywords

Navigation