Skip to main content
Log in

Effects of the anesthetic agent propofol on neural populations

  • Research Article
  • Published:
Cognitive Neurodynamics Aims and scope Submit manuscript

Abstract

The neuronal mechanisms of general anesthesia are still poorly understood. Besides several characteristic features of anesthesia observed in experiments, a prominent effect is the bi-phasic change of power in the observed electroencephalogram (EEG), i.e. the initial increase and subsequent decrease of the EEG-power in several frequency bands while increasing the concentration of the anaesthetic agent. The present work aims to derive analytical conditions for this bi-phasic spectral behavior by the study of a neural population model. This model describes mathematically the effective membrane potential and involves excitatory and inhibitory synapses, excitatory and inhibitory cells, nonlocal spatial interactions and a finite axonal conduction speed. The work derives conditions for synaptic time constants based on experimental results and gives conditions on the resting state stability. Further the power spectrum of Local Field Potentials and EEG generated by the neural activity is derived analytically and allow for the detailed study of bi-spectral power changes. We find bi-phasic power changes both in monostable and bistable system regime, affirming the omnipresence of bi-spectral power changes in anesthesia. Further the work gives conditions for the strong increase of power in the δ-frequency band for large propofol concentrations as observed in experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Agmon-Sir H, Segev I (1993) Signal delay and input synchronisation in passive dendritic structures. J Neurophysiol 70:2066–2085

    Google Scholar 

  • Alkire M, Hudetz A, Tononi G (2008) Consciousness and anesthesia. Science 322:876–880

    Article  CAS  PubMed  Google Scholar 

  • Amari S (1977) Dynamics of pattern formation in lateral-inhibition type neural fields. Biol Cybern 27:77–87

    Article  CAS  PubMed  Google Scholar 

  • Amit DJ (1989) Modeling brain function: the world of attactor neural networks. Cambridge University Press, Cambridge

    Google Scholar 

  • Andrews D, Leslie K, Sessler D, Bjorksten A (1997) The arterial blood propofol concentration preventing movement in 50 of healthy women after skin incision. Anesth Analg 85:414–419

    Article  CAS  PubMed  Google Scholar 

  • Antkowiak B (1999) Different actions of general anesthetics on the firing patterns of neocortical neurons mediated by the GABAA-receptor. Anesthesiology 91:500–511

    Article  CAS  PubMed  Google Scholar 

  • Antkowiak B (2002) In vitro networks: cortical mechanisms of anaesthetic action. Br J Anaesth 89(1):102–111

    Article  CAS  PubMed  Google Scholar 

  • Atay FM, Hutt A (2005) Stability and bifurcations in neural fields with finite propagation speed and general connectivity. SIAM J Appl Math 65(2):644–666

    Article  Google Scholar 

  • Atay FM, Hutt A (2006) Neural fields with distributed transmission speeds and constant feedback delays. SIAM J Appl Dyn Syst 5(4):670–698

    Article  Google Scholar 

  • Bai D, Pennefather P, MacDonald J, Orser BA (1999) The general anesthetic propofol slows deactivation and desensitization of GABAA receptors. J Neurosci 19(24):10635–10646

    CAS  PubMed  Google Scholar 

  • Baker PM, Pennefather PS, Orser BA, Skinner F (2002) Disruption of coherent oscillations in inhibitory networks with anesthetics: role of GABA-A receptor desensitization. J. Neurophysiol 88:2821–2833

    Article  CAS  PubMed  Google Scholar 

  • Bojak I, Liley D (2005) Modeling the effects of anesthesia on the electroencephalogram. Phys Rev E 71:041902

    Article  CAS  Google Scholar 

  • Braitenberg V, Schütz A (1998) Cortex : statistics and geometry of neuronal connectivity, 2nd edn. Springer, Berlin

    Google Scholar 

  • Bressloff PC (2001) Traveling fronts and wave propagation failure in an inhomogeneous neural network. Physica D 155:83–100

    Article  Google Scholar 

  • Bressloff PC, Cowan JD, Golubitsky M, Thomas PJ, Wiener MC (2002) What geometric visual hallucinations tell us about the visual cortex. Neural Comput 14:473–491

    Article  PubMed  Google Scholar 

  • Carstens E, Antognini J (2005) Anesthetic effects on the thalamus, reticular formation and related systems. Thal Rel Syst 3:1–7

    Article  CAS  Google Scholar 

  • Chacron MJ, Longtin A, Maler L (2005) Delayed excitatory and inhibitory feedback shape neural information transmission. Phys Rev E 72:051917

    Article  CAS  Google Scholar 

  • Coombes S (2005) Waves, bumps and patterns in neural field theories. Biol Cybern 93:91–108

    Article  CAS  PubMed  Google Scholar 

  • Coombes S, Lord G, Owen M (2003) Waves and bumps in neuronal networks with axo-dendritic synaptic interactions. Physica D 178:219–241

    Article  Google Scholar 

  • Coombes S, Venkov N, Shiau L, Bojak I, Liley D, Laing C (2007) Modeling electrocortical activity through improved local approximations of integral neural field equations. Phys Rev E 76:051901–0519018

    Article  CAS  Google Scholar 

  • de Jong R, Eger E (1975) Mac expanded: AD50 and AD95 values of common inhalation anesthetics in man. Anesthesiol 42(4):384–389

    Article  Google Scholar 

  • Destexhe A, Contreras D (2006) Neuronal computations with stochastic network states. Science 314:85–90

    Article  CAS  PubMed  Google Scholar 

  • Dutta S, Matsumoto Y, Gothgen N, Ebling W (1997) Concentration-EEG effect relationship of propofol in rats. J Pharm Sci 86(1):37

    Article  CAS  PubMed  Google Scholar 

  • Eggert J, van Hemmen JL (2001) Modeling neuronal assemblies: theory and implementation. Neural Comput 13(9):1923–1974

    Article  CAS  PubMed  Google Scholar 

  • Fell J, Widman G, Rehberg B, Elger C, Fernandez G (2005) Human mediotemporal EEG characteristics during propofol anesthesia. Biol Cybern 92:92–100

    Article  CAS  PubMed  Google Scholar 

  • Forrest F, Tooley M, Saunders P, Prys-Roberts C (1994) Propofol infusion and the suppression of consciousness: the EEG and dose requirements. Br J Anaesth 72:35–41

    Article  CAS  PubMed  Google Scholar 

  • Foster B, Bojak I, Liley DJ (2008) Population based models of cortical drug response: insights from anaesthesia. Cogn Neurodyn 2:283–296

    Article  PubMed  Google Scholar 

  • Franks N (2008) General anesthesia: from molecular targets to neuronal pathways of sleep and arousal. Nat Rev Neurosci 9:370–386

    Article  CAS  PubMed  Google Scholar 

  • Franks N, Lieb W (1994) Molecular and cellular mechanisms of general anesthesia. Nature 367:607–614

    Article  CAS  PubMed  Google Scholar 

  • Freeman W (1979) Nonlinear gain mediating cortical stimulus-response relations. Biol Cybern 33:237–247

    Article  CAS  PubMed  Google Scholar 

  • Freeman W (1992) Tutorial on neurobiology: from single neurons to brain chaos. Int J Bifurcat Chaos 2(3):451–482

    Article  Google Scholar 

  • Gammaitoni L, Hanggi P, Jung P (1998) Stochastic resonance. Rev Modern Phys 70(1):223–287

    Article  CAS  Google Scholar 

  • Gerstner W, Kistler W (2002) Spiking neuron models. Cambridge University Press, Cambridge

    Google Scholar 

  • Han T, Lee J, Kwak I, Kil H, Han K, Kim K (2005) The relationship between bispectral index and targeted propofol concentration is biphasic in patients with major burns. Acta Anaesthesiol Scand 49:85–91

    Article  CAS  PubMed  Google Scholar 

  • Hellwig B (2000) A quantitative analysis of the local connectivity between pyramidal neurons in layers 2/3 of the rat visual cortex. Biol Cybern 82:11–121

    Article  Google Scholar 

  • Hemmings Jr. H, Akabas M, Goldstein P, Trudell J, Orser B, Harrison N (2005) Emerging molecular mechanisms of general anesthetic action. Trends Pharmacol Sci 26(10): 503–510

    Article  CAS  PubMed  Google Scholar 

  • Hutt A (2007) Generalization of the reaction-diffusion, Swift–Hohenberg, and Kuramoto–Sivashinsky equations and effects of finite propagation speeds. Phys Rev E 75:026214

    Article  CAS  Google Scholar 

  • Hutt A (2008) Local excitation-lateral inhibition interaction yields oscillatory instabilities in nonlocally interacting systems involving finite propagation delay. Phys Lett A 372:541–546

    Article  CAS  Google Scholar 

  • Hutt A, Atay F (2005) Analysis of nonlocal neural fields for both general and gamma-distributed connectivities. Physica D 203:30–54

    Article  Google Scholar 

  • Hutt A, Atay F (2006) Effects of distributed transmission speeds on propagating activity in neural populations. Phys Rev E 73:021906

    Article  CAS  Google Scholar 

  • Hutt A, Atay F (2007) Spontaneous and evoked activity in extended neural populations with gamma-distributed spatial interactions and transmission delay. Chaos Solitons Fractals 32:547–560

    Article  Google Scholar 

  • Hutt A, Frank T (2005) Critical fluctuations and 1/f -activity of neural fields involving transmission delays. Acta Phys Pol A 108(6):1021

    CAS  Google Scholar 

  • Hutt A, Schimansky-Geier L (2008) Anesthetic-induced transitions by propofol modeled by nonlocal neural populations involving two neuron types. J Biol Phys 34(3–4):433–440

    Article  PubMed  Google Scholar 

  • Hutt A, Bestehorn M, Wennekers T (2003) Pattern formation in intracortical neuronal fields. Network Comput Neural Syst 14:351–368

    Article  Google Scholar 

  • Hutt A, Sutherland C, Longtin A (2008) Driving neural oscillations with correlated spatial input and topographic feedback. Phys Rev E 78:021911

    Article  CAS  Google Scholar 

  • John E, Prichep L (2005) The anesthetic cascade: a theory of how anesthesia suppresses consciousness. Anesthesiol 102:447–471

    Article  Google Scholar 

  • Kaisti K, Metshonkala L, Ters M, Oikonen V, Aalto S, Jskelinen S, Hinkka S, Scheinin H (2002) Effects of surgical levels of propofol and sevoflurane anesthesia on cerebral blood flow in healthy subjects studied with positron emission tomography. Anesthesiol 96:1358–1370

    Article  CAS  Google Scholar 

  • Kazama T, Ikeda K, Morita K, Sanjo Y (1998) Awakening propofol concentration with and without blood-effect site equilibration after short-term and long-term administration of propofol and fentanyl anesthesia. Anesthesiology 88(4):928–934

    Article  CAS  PubMed  Google Scholar 

  • Kitamura A, Marszalec W, Yeh J, Narahashi T (2002) Effects of halothane and propofol on excitatory and inhibitory synaptic transmission in rat cortical neurons. J Pharmacol 304(1):162–171

    Google Scholar 

  • Koch C (1999) Biophysics of computation. Oxford University Press, Oxford

    Google Scholar 

  • Kuizenga K, Kalkman C, Hennis PJ (1998) Quantitative electroencephalographic analysis of the biphasic concentration-effect relationship of propofol in surgical patients during extradural analgesia. Br J Anaesth 80:725–732

    CAS  PubMed  Google Scholar 

  • Kuizenga K, Wierda J, Kalkman C (2001) Biphasic EEG changes in relation to loss of consciousness during induction with thiopental, propofol, etomidate, midazolam or sevoflurane. Br J Anaesth 86(3):354–360

    Article  CAS  PubMed  Google Scholar 

  • Laing C, Troy W (2003) PDE methods for non-local models. SIAM J Appl Dyn Syst 2(3):487–516

    Article  Google Scholar 

  • Liley D, Bojak I (2005) Understanding the transition to seizure by modeling the epileptiform activity of general anaesthetic agents. J Clin Neurophysiol 22:300–313

    CAS  PubMed  Google Scholar 

  • Liley D, Cadusch P, Wright J (1999) A continuum theory of electrocortical activity. Neurocomputing 26-27:795–800

    Article  Google Scholar 

  • Liu G (2004) Local structural balance and functional interaction of excitatory and inhibitory synapses in hippocampal dendrites. Nat Neurosci 7:373–379

    Article  CAS  PubMed  Google Scholar 

  • Marik P (2004) Propofol: therapeutic indications and side-effects. Curr Pharm Des 10(29):3639–3649

    Article  CAS  PubMed  Google Scholar 

  • Masuda N, Doiron B, Longtin A, Aihara K (2005) Coding of temporally varying signals in networks of spiking neurons with global delayed feedback. Neural Comput 17:2139–2175

    Article  PubMed  Google Scholar 

  • McKernan M, Rosendahl T, Reynolds D, Sur C, Wafford K, Atack J, Farrar S, Myers J, Cook G, Ferris P, Garrett L, Bristow L, Marshall G, Macaulay A, Brown N, Howell O, Moore K, Carling R, Street L, Castro J, Ragan C, Dawson G, Whiting P (1997) Sedative but not anxiolytic properties of benzodiazepines are mediated by the GABAA receptor A1 subtype. Nat Neurosci 3(6):587–592

    Article  Google Scholar 

  • Megias M, Emri Z, Freund T, Gulyas A (2001) Total number and distribution of inhibitory and excitatory synapses on hippocampal CA1 pyramidal cells. Neuroscience 102:527–540

    Article  CAS  PubMed  Google Scholar 

  • Mell B, Schiller J (2004) On the fight between excitation and inhibition: location is everyting. Sci STKE, p. 44

  • Molaee-Ardekani B, Senhadji L, Shamsollahi M, Vosoughi-Vahdat B, Wodey E (2007) Brain activity modeling in general anesthesia: enhancing local mean-field models using a slow adaptive firing rate. Phys Rev E 76:041911

    Article  CAS  Google Scholar 

  • Musizza B, Stefanovska A, McClintock P, Palus M, Petrovcic J, Ribaric S, Bajrovic F (2007) Interactions between cardiac, respiratory and EEG-delta oscillations in rats during anaesthesia. J Physiol Lond 580:315–326

    Article  CAS  PubMed  Google Scholar 

  • Mustola S, Baer G, Toivonen J, Salomaki A, Scheinin M, Huhtala H, Laippala P, Jantti V (2003) Electroencephalographic burst suppression versus loss of reflexes anesthesia with propofol or thiopental: differences of variance in the catecholamine and cardiovascular response to tracheal intubation. Anesth Analg 97:1040–1045

    Article  CAS  PubMed  Google Scholar 

  • Nicholson C, Freeman J (1975) Theory of current source-density analysis and determination of conductivity tensor for anuran cerebellum. J Neurophysiol 38:356–368

    CAS  PubMed  Google Scholar 

  • Nunez P (1974) The brain wave equation: a model for the EEG. Math Biosci 21:279–291

    Article  Google Scholar 

  • Nunez P (1981) Electrical fields of the brain. Oxford University Press, Oxford

    Google Scholar 

  • Nunez P (1995) Neocortical dynamics and human EEG rhythms. Oxford University Press, New York

    Google Scholar 

  • Nunez P (2000) Toward a quantitative description of large-scale neocortical dynamic function and EEG. Behav Brain Sci 23:371–437

    Article  CAS  PubMed  Google Scholar 

  • Nunez P, Srinivasan R (2006) Electric fields of the brain: the neurophysics of EEG. Oxford University Press, New York

    Book  Google Scholar 

  • Orser B (2007) Lifting the fog around anesthesia. Sci Am 7:54–61

    Article  Google Scholar 

  • Otsuka T, Kawaguchi Y (2009) Cortical inhibitory cell types differentially form intralaminar and interlaminar subnetworks with excitatory neurons. J Neurosc 29(34):10533–10540

    Google Scholar 

  • Pittson S, Himmel A, MacIver M (2004) Multiple synaptic and membrane sites of anesthetic action in the ca1 region of rat hippocampal slices. BMC Neurosci 5:52

    Article  PubMed  CAS  Google Scholar 

  • Rampil I, King B (1996) Volatile anesthetics depress spinal motor neurons. Anesthesiology 85:129–134

    Article  CAS  PubMed  Google Scholar 

  • Rennie C, Robinson P, Wright J (2002) Unified neurophysical model of EEG spectra and evoked potentials. Biol Cybern 86:457–471

    Article  CAS  PubMed  Google Scholar 

  • Robinson P (2003) Neurophysical theory of coherence and correlations of electroencephalographic and electrocorticographic signals. J Theor Biol 222:163–175

    Article  CAS  PubMed  Google Scholar 

  • Robinson P, Loxley P, O’Connor S, Rennie C (2001) Modal analysis of corticothalamic dynamics, electroencephalographic spectra and evoked potentials. Phys Rev E 63:041909

    Article  CAS  Google Scholar 

  • Robinson P, Whitehouse R, Rennie C (2003) Nonuniform corticothalamic continuum model of encephalographic spectra with application to split-alpha peaks. Phys Rev E 68:021922

    Article  CAS  Google Scholar 

  • Robinson P, Rennie CJ, Rowe DL, O’Connor SC (2004) Estimation of multiscale neurophysiologic parameters by electroencephalographic means. Hum Brain Mapp 23:53–72

    Article  CAS  PubMed  Google Scholar 

  • Rundshagen I, Schroeder T, Prochep I, John E, Kox W (2004) Changes in cortical electrical activity during induction of anaesthesia with thiopental/fentanyl and tracheal intubation: a quantitative electroencephalographic analysis. Br J Anaesth 92(1):33–38

    Article  CAS  PubMed  Google Scholar 

  • Smetters D (1995) Electrotonic structure and synaptic integration in cortical neurons. Ph.D. thesis, Massachusetts Institute of Technology, Cambridge, Massachusetts

  • Srinivasan R, Nunez P, Silberstein R (1998) Spatial filtering and neocortical dynamics: estimates of EEG coherence. IEEE Trans Biomed Eng 45:814–827

    Article  CAS  PubMed  Google Scholar 

  • Steyn-Ross M, Steyn-Ross D (1999) Theoretical electroencephalogram stationary spectrum for a white-noise-driven cortex: evidence for a general anesthetic-induced phase transition. Phys Rev E 60(6):7299–7311

    Article  CAS  Google Scholar 

  • Steyn-Ross M, Steyn-Ross D, Sleigh J, Wilcocks L (2001a) Toward a theory of the general-anesthetic-induced phase transition of the cerebral cortex: I. A thermodynamic analogy. Phys Rev E 64:011917J

    Article  CAS  Google Scholar 

  • Steyn-Ross M, Steyn-Ross D, Sleigh J, Wilcocks L (2001b) Toward a theory of the general-anesthetic-induced phase transition of the cerebral cortex: II. Numerical simulations, spectra entropy, and correlation times. Phys Rev E 64:011918

    Article  CAS  Google Scholar 

  • Steyn-Ross M, Steyn-Ross D, Sleigh J (2004) Modelling general anaesthesia as a first-order phase transition in the cortex. Prog Biophys Mol Biol 85(2-3):369–385

    Article  CAS  PubMed  Google Scholar 

  • Stienen P, van Oostrom H, Hellebrekers L (2008) Unexpected awakening from anaesthesia after hyperstimulation of the medial thalamus in the rat. Brit J Anaesth 100(6):857–859

    Article  CAS  PubMed  Google Scholar 

  • van Hemmen J (2004) Continuum limit of discrete neuronal structures: is cortical tissue an ‘excitable’ medium? Biol Cybern 91(6):347–358

    Article  PubMed  Google Scholar 

  • Venkov N, Coombes S, Matthews P (2007) Dynamic instabilities in scalar neural field equations with space-dependent delays. Physica D 232:1–15

    Article  Google Scholar 

  • Veselis R, Reinsel R, Beattie B, Mawlawi O, Feschenko V, DiResta G, Larson S, Blasberg R (1997) Midazolam changes cerebral bloodflow in discrete brain regions: an h2(15)o positron emission tomography study. Anesthesiol 87:1106–1117

    Article  CAS  Google Scholar 

  • Wessen A, Persson P, Nilsson A, Hartvig P (1993) Concentration-effect relationships of propofol after total intravenous anesthesia. Anesth Analg 77:1000–1007

    CAS  PubMed  Google Scholar 

  • Wilson M, Sleigh J, Steyn-Ross A, Steyn-Ross M (2006) General anesthetic-induced seizures can be explained by a mean-field model of cortical dynamics. Anesthsiol 104(3):588–593

    Article  Google Scholar 

  • Wright J, Kydd R (1992) The electroencephaloggram and cortical neural networks. Network 3:341–362

    Article  Google Scholar 

  • Wright J, Liley D (1995) Simulation of electrocortical waves. Biol Cybern 72:347–356

    Article  CAS  PubMed  Google Scholar 

  • Wright J, Liley D (2001) A millimetric-scale simulation of electrocortical wave dynamics based on anatomical estimates of cortical synaptic density. Biosystems 63:15–20

    Article  Google Scholar 

  • Yang C, Shyr M, Kuo T, Tan P, Chan S (1995) Effects of propofol on nociceptive response and power spectra of electroencephalographic and sytemic arterial pressure signals in the rat: correlation with plasma concentration. J Pharmacol Exp Ther 275:1568–1574

    CAS  PubMed  Google Scholar 

  • Ying S, Goldstein P (2005) Propofol-block of SK channels in reticular thalamic neurons enhances gabaergic inhibition in relay neurons. J Neurophysiol 93:1935–1948

    Article  CAS  PubMed  Google Scholar 

  • Yoshioka T, Levitt J, Lund J (1992) Intrinsic lattice connections of macaque monkey visual cortical area v4. J Neurosci 12(7):2785–2802

    CAS  PubMed  Google Scholar 

Download references

Acknowledgment

The authors acknowledge the financial support of NSERC Canada.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Axel Hutt.

Appendix

Appendix

Variables from section "Linear stability"

This section gives the polynomial constants of the characteristic Eq. 27:

$$ \begin{aligned} C(p,k)&=\gamma_e+\gamma_i+A_1-B_1\\ D(p,k)&=\omega_0^2+1-A_0+(\gamma_e+A_1)\gamma_i-B_1\gamma_e+B_0\\ E(p,k)&=(\omega_0^2+B_0)\gamma_e+(1-A_0)\gamma_i+\omega_0^2A_1\\ F(p,k)&=\omega_0^2(1-A_0)+B_0 \end{aligned} $$
(51)

with

$$ \begin{aligned} A_0(p,k)=&\delta_E(p)M_{0}(\sigma_ek), A_1(p,k)=\delta_E(p)\tau_eM_{1}(\sigma_ek)\\ B_0(p,k)=&\omega_0^2f(p)\delta_I(p)M_{0}(\sigma_ik), B_1(p,k)=\omega_0^2f(p)\delta_I(p)\tau_iM_{1}(\sigma_ik) \end{aligned} $$

and τ e  = σ e /v i  = σ i /v. For p = 1, δ E , δ I  ≈ 0 and A 0, B 0, A 1, B 1 ≈ 0. Hence the pre-factors of the polynom (27) read

$$ \begin{aligned} C(p,k)&=\gamma_e+\gamma_i, \quad D(p,k)=\omega_0^2+1+\gamma_e\gamma_i\\ E(p,k)&=\omega_0^2\gamma_e+\gamma_i, \quad F(p,k)=\omega_0^2 \end{aligned} $$

The autocorrelation function

To obtain the effective membrane potential u(x,t) in section "The general power spectrum", we may write

$$ u(x,t)=\int_\Upomega dx^\prime \int_{-\infty}^\infty dt^\prime G(x-x^\prime,t-t^\prime)\Upgamma(x^\prime,t^\prime) $$
(52)
$$ =\int_{-\infty}^\infty dk \int_{-\infty}^\infty d\omega \tilde{G}(k,\omega)\tilde{\Upgamma}(k,\omega)e^{ikx-i\omega t}. $$
(53)

Here G(x,t) is the Greens’ function of the system, \(\tilde{G}(k,\omega)\) denotes its Fourier transform and \(\tilde{\Upgamma}(k,\omega)\) is the Fourier transform of the external stimulus Γ(x,t). Considering (53), then the correlation function reads

$$ \begin{aligned} C_{LFP}(x,\tau)=&\langle u(x,t)u(x,t-\tau)\rangle\\ =&{\frac{1}{(2\pi)^2}}\int_{-\infty}^\infty dk\int_{-\infty}^\infty dk^\prime \int_{-\infty}^\infty d\omega\int_{-\infty}^\infty d\omega^\prime\\ &\times\tilde{G}(k,\omega)\tilde{G}(k^\prime,\omega^\prime) \langle\tilde{\Upgamma}(k,\omega)\tilde{\Upgamma}(k^\prime,\omega^\prime)\rangle e^{i(kx+k^\prime x)-i\omega t-i\omega^\prime(t-\tau)}. \end{aligned} $$
(54)

Since the power spectrum p LFP (x,ω) is defined by C LFP (x,τ), we deduce from (54) that the power spectrum is determined by the Fourier transform of the Greens’ function \(\tilde{G}(k,\omega)\) and the input correlation function in Fourier space \(\langle \tilde{\Upgamma}(k,\omega)\tilde{\Upgamma}(k^\prime,\omega^\prime)\rangle.\)

The Greens’ function

To compute the Greens function, we apply the Fourier transform in space to Eqs. 33 and 34, and obtain

$$ \begin{aligned} \tilde{u}_e(k,t)=&a_e\delta_E\int_{-\infty}^t d\tau h_e(t-\tau) \int_\Upomega dz K_e(z)\left(\tilde{u}_e\left(k,\tau-{\frac{|z|} {v}}\right)-\tilde{u}_i\left(k,\tau-{\frac{|z|}{v}}\right)\right)e^{-ikz}+\tilde{\Upgamma}(k,t)\\ \tilde{u}_i(x,t)=&a_i\delta_If\omega_0^2\int_{-\infty}^t d\tau h_i(t-\tau) \int_\Upomega dz K_i(z)\left(\tilde{u}_e\left(k,\tau-{\frac{|z|}{v}}\right) -\tilde{u}_i\left(k,\tau-{\frac{|z|}{v}}\right)\right)e^{-ikz}. \end{aligned} $$

Then it follows that

$$ \begin{aligned} \tilde{u}(k,t)=\,&\tilde{u}_e(k,t)-\tilde{u}_i(k,t)\\ =\,&a_e\delta_E\int_{-\infty}^t d\tau h_e(t-\tau) \int_\Upomega dz K_e(z)\left(\tilde{u}_e\left(k,\tau-{\frac{|z|}{v}}\right)-\tilde{u}_i\left(k,\tau -{\frac{|z|}{v}}\right)\right)e^{-ikz}\\ &-a_i\delta_If\omega_0^2\int_{-\infty}^t d\tau h_i(t-\tau) \int_\Upomega dz K_i(z)\left(\tilde{u}_e\left(k,\tau-{\frac{|z|}{v}}\right)-\tilde{u}_i\left(k,\tau-{\frac{|z|} {v}}\right)\right)e^{-ikz} +\tilde{\Upgamma}(k,t)\\ =&\int_{-\infty}^t d\tau\int_\Upomega dz H(z,t-\tau)\tilde{u}\left(k,\tau-{\frac{|z|}{v}}\right)e^{-ikz}+\tilde{\Upgamma}(k,t) \end{aligned} $$
(55)

with

$$ H(z,t)=a_e\delta_E h_e(t) K_e(z)-a_i\delta_If\omega_0^2 h_i(t) K_i(z). $$

In addition

$$ g(k,t)={\frac{1}{\sqrt{2\pi}}}\int_{-\infty}^{\infty} d\omega \tilde{G}(k,\omega)e^{-i\omega t} $$
(56)

is the spatial Fourier transform of G(x,t) and we write \(\tilde{u}(k,t)\) using (52) as

$$ \tilde{u}(k,t)=\int_{-\infty}^{\infty} d\tau g(k,t-\tau)\tilde{\Upgamma}(k,\tau). $$
(57)

Further we recall the identity (see e.g. Atay and Hutt 2006)

$$ \tilde{u}\left(k,t-{\frac{|z|}{c}}\right) =\sum_{n=0}^\infty{\frac{1}{n!}}\left( -{\frac{|z|}{c}}\right)^n{\frac{\partial^n\tilde{u}(k,t)}{\partial t^n}} $$
(58)

and obtain from (55), (56), (57) and (58) after a Fourier transformation into frequency space

$$ \tilde{G}(k,\omega)={\frac{1}{\sqrt{2\pi}}}{\frac{1}{1-\sum_{n=0}^\infty{\mathcal L}_n(k,\omega) (-i\omega)^n}} $$
(59)

with

$$ {\mathcal L}_n(k,\omega)=\,{\frac{1}{n!}}\left(-{\frac{1}{v}}\right)^n\int_0^\infty dt \left(a_e\delta_E h_e(t) \tilde{K}_e^{n}(k)-a_i\delta_If\omega_0^2 h_i(t) \tilde{K}_i^{n}(k)\right)e^{i\omega t} $$
(60)

and the kernel Fourier moments (Atay and Hutt 2005)

$$ \tilde{K}^{n}(k)=\int_\Upomega dz K(z)|z|^ne^{-ikz}. $$

The external input

Considering the input (36), then the Fourier transform in space and time yields

$$ \tilde{\Upgamma}(k,\omega)={\frac{1}{\sqrt{2\pi}}} \bar{h}_e(\omega)\tilde{\xi}(k,\omega), $$
(61)
$$ \bar{h}_e(\omega)=\int_0^\infty dt h_e(t)e^{i\omega t} $$
(62)

with the Fourier transform of the external signal \(\tilde{\xi}(k,\omega).\) Since the external fluctuations in Fourier space are uncorrelated,

$$ \langle \tilde{\xi}(k,\omega)\tilde{\xi}(k^\prime,\omega^\prime) \rangle=Q\delta({k+k^\prime}) \delta({\omega+\omega^\prime}), $$
(63)

we obtain finally

$$ \langle \tilde{\Upgamma}(k,\omega)\tilde{\Upgamma}(k^\prime,\omega^\prime)\rangle ={\frac{Q} {2\pi}}\bar{h}_e (\omega)\bar{h}_e(\omega^\prime)\delta(k+k^\prime)\delta({\omega+\omega^\prime}). $$
(64)

dX/dp > 0 in single stationary solutions

Considering Eq. 47,

$$ \begin{aligned} {\frac{dX(p)}{dp}}=\,&f^\prime-{\frac{\delta^\prime\rho^\prime(a_e-a_if) -\delta a_if^\prime}{S_mca_i}}{\frac{(1+\rho)^2}{1-\rho}}\\ &+{\frac{1-\delta(a_e-a_if)}{S_mca_i}}{\frac{(3-\rho)(1+\rho)} {(1-\rho)^2}}\rho^\prime \end{aligned} $$
(65)

with f′ = df/dp > 0, δ′ = ∂δ/∂ρ > and ρ′ = dρ/dp > 0. Further Fig. 3b illustrates the limits \(\bar{V}_-\gg\Uptheta (\rho\approx 0)\) for p ≈ 1 and \(\bar{V}_-\to\Uptheta (\rho \to 1)\) for p → ∞ and section "The resting state" shows that a e  − a i f < 0. Then (65) gives \({\frac{dX(p)}{dp}} > 0\) for all p.

The power spectrum for large frequencies

To compute p EEG(ν), we consider Eq. 41 and compute the Greens’ function (59) in the long wavelength limit as

$$ \tilde{G}(0,\nu)\approx{\frac{1}{\sqrt{2\pi}}}{\frac{1}{1-{\mathcal L}_0(p,\nu)+i2\pi\nu{\mathcal L}_1(p,\nu)}} $$
(66)

with \({\mathcal L}_0(p,\nu), {\mathcal L}_1(p,\nu)\) defined as

$$ \begin{aligned} {\mathcal L}_0(p,\nu)=\,&{\mathcal L}_{0,r}(p,\nu)+i2\pi\nu{\mathcal L}_{0,i}(p,\nu)\\ {\mathcal L}_1(p,\nu)=\,&{\mathcal L}_{1,r}(p,\nu)+i2\pi\nu{\mathcal L}_{1,i}(p,\nu) \end{aligned} $$

with

$$ \begin{aligned} {\mathcal L}_{0,r}(p,\nu)=\,&A_e(\nu)\delta_E(p)-A_i(p,\nu)\delta_I(p)f(p)\omega_0^2(p)\\ {\mathcal L}_{0,i}(p,\nu)=\,&B_e(\nu)\delta_E(p)-B_i(p,\nu)\delta_I(p)f(p)\omega_0^2(p)\\ {\mathcal L}_{1,r}(p,\nu)=\,&A_e(\nu)a_e\delta_E(p)\tilde{K}_e^{1}(0)/v -A_i(p,\nu)a_i\delta_I(p)f(p)\omega_0^2(p)\tilde{K}_i^{1}/v\\ {\mathcal L}_{1,i}(p,\nu)=\,&B_e(\nu)a_e\delta_E(p)\tilde{K}_e^{1}(0)/v -B_i(p,\nu)a_i\delta_I(p)f(p)\omega_0^2(p)\tilde{K}_i^{1}/v \end{aligned} $$

and

$$ \begin{aligned} A_e(\nu)=\,&{\frac{1-(2\pi\nu)^2}{1+(2\pi\nu)^2(\gamma_e^2-2)+(2\pi\nu)^4}}\\ A_i(\nu)=\,&{\frac{\omega_0^2-(2\pi\nu)^2}{\omega_0^4+(2\pi\nu)^2(\gamma_i^2 -\omega_0^2)+(2\pi\nu)^4}}\\ B_e(\nu)=\,&{\frac{\gamma_e}{1+(2\pi\nu)^2(\gamma_e^2-2) +(2\pi\nu)^4}}\\ B_i(\nu)=\,&{\frac{\gamma_i}{\omega_0^4+(2\pi\nu)^2(\gamma_i^2-\omega_0^2) +(2\pi\nu)^4}}. \end{aligned} $$

Equation 66 assumes the approximation of a large but finite propagation speed v. Then inserting (66) into (41) yields the power spectrum

$$ P_{\rm EEG}(\nu)={\frac{Q}{2\pi}} {\frac{A_e^2(\nu)+B_e^2(\nu)}{(1-{\mathcal L}_{0,r})^2 +4\pi^2\nu^2(2(1-{\mathcal L}_{0,r}) {\mathcal L}_{1,i}+({\mathcal L}_{0,i} +{\mathcal L}_{1,r})^2)+{\mathcal L}_{1,i}^2}}. $$
(67)

The functions \({\mathcal L}_{1,r}, {\mathcal L}_{1,i}\) depend on the propagation speed and are small compared to \({\mathcal L}_{0,r}.\) Hence neglecting terms containing \({\mathcal L}_{1,r}, {\mathcal L}_{1,i},\) we find the conditions (50).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hutt, A., Longtin, A. Effects of the anesthetic agent propofol on neural populations. Cogn Neurodyn 4, 37–59 (2010). https://doi.org/10.1007/s11571-009-9092-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11571-009-9092-2

Keywords

Navigation