Skip to main content
Log in

Universal extrapolation spaces for \(\hbox {C}_{0}\)-semigroups

  • Published:
ANNALI DELL'UNIVERSITA' DI FERRARA Aims and scope Submit manuscript

Abstract

The classical theory of Sobolev towers allows for the construction of an infinite ascending chain of extrapolation spaces and an infinite descending chain of interpolation spaces associated with a given \(C_0\)-semigroup on a Banach space. In this note we first generalize the latter to the case of a strongly continuous and exponentially equicontinuous semigroup on a complete locally convex space. As a new concept—even for \(C_0\)-semigroups on Banach spaces—we then define a universal extrapolation space as the completion of the inductive limit of the ascending chain. Under mild assumptions we show that the semigroup extends to this space and that it is generated by an automorphism of the latter. Dually, we define a universal interpolation space as the projective limit of the descending chain. We show that the restriction of the initial semigroup to this space is again a semigroup and always has an automorphism as generator.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Albanese, A.A., Bonet, J., Ricker, W.J.: Mean ergodic semigroups of operators. Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Math. RACSAM 106(2), 299–319 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  2. Albanese, A.A., Bonet, J., Ricker, W.J.: Montel resolvents and uniformly mean ergodic semigroups of linear operators. Quaest. Math. 36, 253–290 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  3. Albanese, A.A., Kühnemund, F.: Trotter-Kato approximation theorems for locally equicontinuous semigroups. Riv. Mat. Univ. Parma (7) 1, 19–53 (2002)

    MATH  MathSciNet  Google Scholar 

  4. Bierstedt, K.D.: An introduction to locally convex inductive limits. In: Functional Analysis and its Applications (Nice, 1986) 35–133, ICPAM Lecture Notes, pp. 35–133. World Science Publishing, Singapore (1988)

  5. Bierstedt, K.D., Meise, R., Summers, W.H.: Köthe sets and Köthe sequence spaces. In: Functional Analysis, Holomorphy and Approximation Theory (Rio de Janeiro, 1980), North-Holland Math. Stud., vol. 71, pp. 27–91. North-Holland, Amsterdam (1982)

  6. Bierstedt, K.D., Meise, R., Summers, W.H.: A projective description of weighted inductive limits. Trans. Amer. Math. Soc. 272(1), 107–160 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  7. Choe, Y.H.: \(C_0\)-semigroups on a locally convex space. J. Math. Anal. Appl. 106(2), 293–320 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  8. Da Prato, G., Grisvard, P.: On extrapolation spaces. Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. (8) 72(6), 330–332 (1983) (1982)

    Google Scholar 

  9. Da Prato, G., Grisvard, P.: Maximal regularity for evolution equations by interpolation and extrapolation. J. Funct. Anal. 58(2), 107–124 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  10. Engel, K.J., Nagel, R.: One-Parameter Semigroups for Linear Evolution Equations, Graduate Texts in Mathematics, vol. 194. Springer-Verlag, New York (2000)

    Google Scholar 

  11. Floret, K., Wloka, J.: Einführung in die Theorie der lokalkonvexen Räume. In: Lecture Notes in Mathematics, No. 56. Springer-Verlag, Berlin (1968)

  12. Haase, M.: Operator-valued \(H^\infty \)-calculus in inter- and extrapolation spaces. Int. Equ. Oper. Theory 56(2), 197–228 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  13. Jarchow, H.: Locally Convex Spaces. B. G. Teubner, Stuttgart (1981)

    Book  MATH  Google Scholar 

  14. Kōmura, T.: Semigroups of operators in locally convex spaces. J. Funct. Anal. 2, 258–296 (1968)

    Article  MATH  Google Scholar 

  15. Lamb, W.: Fractional powers of operators defined on a Fréchet space. Proc. Edinb. Math. Soc. (2) 27(2), 165–180 (1984)

    MATH  MathSciNet  Google Scholar 

  16. Lamb, W., McBride, A.C.: On relating two approaches to fractional calculus. J. Math. Anal. Appl. 132(2), 590–610 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  17. Lamb, W., Schiavone, S.E.: A fractional power approach to fractional calculus. J. Math. Anal. Appl. 149(2), 377–401 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  18. Maírtnez, C., Sanz, M.: Spectral mapping theorem for fractional powers in locally convex spaces. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 24(4), 685–702 (1997)

    MathSciNet  Google Scholar 

  19. Martínez, C., Sanz, M., Calvo, V.: Fractional powers of nonnegative operators in Fréchet spaces. Int. J. Math. Math. Sci. 12(2), 309–320 (1989)

    Article  MATH  Google Scholar 

  20. Meise, R., Vogt, D.: Introduction to Functional Analysis, vol. 2. The Clarendon Press Oxford University Press, New York (1997)

    MATH  Google Scholar 

  21. Nagel, R.: Sobolev spaces and semigroups. Semesterbericht Funktionalanalysis Tübingen (Sommersemester 1983) (1983)

  22. Nagel, R.: Extrapolation spaces for semigroups. Sūrikaisekikenkyūsho Kōkyūroku (1009), 181–191 (1997)

  23. van Neerven, J.: The Adjoint of a Semigroup of Linear Operators, Lecture Notes in Mathematics, vol. 1529. Springer-Verlag, Berlin (1992)

    Book  Google Scholar 

  24. Pérez Carreras, P., Bonet, J.: Barrelled Locally Convex Spaces. North-Holland Mathematics Studies 113 (1987)

  25. Triebel, H.: Interpolation Theory, Function Spaces, Differential Operators, 2nd edn. Johann Ambrosius Barth, Heidelberg (1995)

    MATH  Google Scholar 

  26. Wengenroth, J.: Derived Functors in Functional Analysis. Lecture Notes in Mathematics. Springer, Berlin (2003)

    Book  Google Scholar 

  27. Wintermayr, J.: Personal communications (2013)

Download references

Acknowledgments

The author likes to thank B. Jacob for several fruitful discussions on the topic of this note. Moreover, he likes to thank B. Farkas, who drew the author’s attention to the study of inductive and projective limits of Sobolev towers. Finally, the author likes to thank the referee for his careful work and his valuable comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sven-Ake Wegner.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wegner, SA. Universal extrapolation spaces for \(\hbox {C}_{0}\)-semigroups. Ann Univ Ferrara 60, 447–463 (2014). https://doi.org/10.1007/s11565-013-0189-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11565-013-0189-5

Keywords

Mathematics Subject Classification (2000)

Navigation