Skip to main content
Log in

Progression chronischer Nierenerkrankungen

Genetische Aspekte

Progression of chronic kidney diseases

Genetic aspects

  • Leitthema
  • Published:
Der Nephrologe Aims and scope

Zusammenfassung

Eine progrediente Nierenfunktionsverschlechterung ist mit einem hohen Risiko für terminale Nierenerkrankung und Mortalität assoziiert. 38 % der interindividuellen Variabilität des jährlichen Nierenfunktionsverlusts in einer Population ist auf genetische Variabilität zurückzuführen und ist die Rationale für die systematische Suche nach zugrunde liegenden genetischen Varianten mittels genomweiter Assoziationsstudien (GWAS). Mit GWAS konnten in der Allgemeinbevölkerung drei Loci identifiziert werden, die mit Nierenfunktionsverlustphänotypen assoziiert sind: UMOD, CHD23 und GALNT11. Varianten im UMOD-Locus sind zudem assoziiert mit dem Risiko für eine neu auftretende chronische Nierenerkrankung (CKD) sowie eine terminale Nierenerkrankung, möglicherweise bedingt durch eine Beeinflussung resorptiver Vorgänge im Nierentubulus und eine veränderte Expression des Genprodukts, Uromodulin. In monogenetischen Nierenerkrankungen wie ADPKD (autosomal-dominate polyzystische Nierenerkrankung) und Alport-Syndrom ist die Art der Mutation entscheidend für den Verlauf der Erkrankung. Risiko-Scores, die genetische Informationen einkalkulieren, können in Zukunft bei ADPKD möglicherweise Hilfestellung beim Einsatz von Therapien wie Tolvaptan leisten. Geplante GWAS in Kohorten mit manifester oder hohem Risiko für CKD haben das Potenzial, neue Erkenntnisse zu Faktoren zu liefern, die die Progression einer CKD beeinflussen.

Abstract

A progressive decline in renal function is associated with a high risk of end-stage renal disease (ESRD) and mortality. The interindividual variability of the annual decline in kidney function in a population ascribable to genetic variability is estimated to be 38 % and is the rationale for the systematic search for underlying genetic variants using genome-wide association studies (GWAS). With GWAS three loci associated with a decline in kidney function could be identified in the general population: UMOD, CHD23 and GALNT11. Variants at the UMOD locus are further associated with a risk for newly occurring chronic kidney disease (CKD) and for ESRD, possibly due to influences on resorptive processes in the kidney tubules and an altered expression of the gene product, uromodulin. In monogenetic kidney diseases, such as autosomal dominant polycystic kidney disease (ADPKD) and Alport syndrome, the type of mutation is decisive for the course of the disease. Risk scores that include genetic information can in the future possibly provide assistance to clinicians prescribing tolvaptan for treatment of ADPKD. Planned GWAS in cohorts with manifest or a high risk for CKD have the potential for identifying further genetic factors affecting the progression of CKD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1

Literatur

  1. KDGO (2013) KDIGO clinical practice guideline for the evaluation and management of chronic kidney disease. Kidney Int 3(Suppl):1–150

    Google Scholar 

  2. Ku E, Xie D, Shlipak M, Hyre Anderson A et al (2015) Change in measured GFR versus eGFR and CKD outcomes. J Am Soc Nephrol pii:ASN.2015040341. (Epub ahead of print)

    Google Scholar 

  3. Inker LA, Schmid CH, Tighiouart H, Eckfeldt JH et al (2012) Estimating glomerular filtration rate from serum creatinine and cystatin C. N Engl J Med 367(1):20–29

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Li L, Astor BC, Lewis J, Hu B et al (2012) Longitudinal progression trajectory of GFR among patients with CKD. Am J Kidney Dis 59(4):504–512

    Article  PubMed  PubMed Central  Google Scholar 

  5. Baumeister SE, Böger CA, Krämer BK, Doring A et al (2010) Effect of chronic kidney disease and comorbid conditions on health care costs: a 10-year observational study in a general population. Am J Nephrol 31(3):222–229

    Article  PubMed  Google Scholar 

  6. Gorski M, Tin A, Garnaas M, McMahon GM et al (2015) Genome-wide association study of kidney function decline in individuals of European descent. Kidney Int 87(5):1017–1029

    Article  CAS  PubMed  Google Scholar 

  7. Shlipak MG, Katz R, Kestenbaum B, Siscovick D et al (2009) Rapid decline of kidney function increases cardiovascular risk in the elderly. J Am Soc Nephrol 20(12):2625–2630

    Article  PubMed  PubMed Central  Google Scholar 

  8. Coresh J, Turin TC, Matsushita K, Sang Y et al (2014) Decline in estimated glomerular filtration rate and subsequent risk of end-stage renal disease and mortality. JAMA 311(24):2518–2531

    Article  PubMed  PubMed Central  Google Scholar 

  9. Thompson A, Lawrence J, Stockbridge N (2014) GFR decline as an end point in trials of CKD: a viewpoint from the FDA. Am J Kidney Dis 64(6):836–837

    Article  PubMed  Google Scholar 

  10. Böger C, Heid I (2011) Chronic kidney disease: novel insights from genome wide association studies. Kidney Blood Press Res 34:27–36

    Article  Google Scholar 

  11. Welter D, MacArthur J, Morales J, Burdett T et al (2014) he NHGRI GWAS Catalog, a curated resource of SNP-trait associations. Nucleic Acids Res 42:D1001–6

    Article  CAS  PubMed  Google Scholar 

  12. Pattaro C, Teumer A, Gorski M, Chu AY et al (2016) Genetic associations at 53 loci highlight cell types and biological pathways relevant for kidney function. Nat Commun 7:10023

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Köttgen A, Pattaro C, Böger CA, Fuchsberger C et al (2010) New loci associated with kidney function and chronic kidney disease. Nat Genet 42(5):376–384

    Article  PubMed  PubMed Central  Google Scholar 

  14. Böger CA, Gorski M, Li M, Hoffmann MM et al (2011) Association of eGFR-related loci identified by GWAS with incident CKD and ESRD. Plos Genet 7(9):e1002292

    Article  PubMed  PubMed Central  Google Scholar 

  15. Titze S, Schmid M, Kottgen A, Busch M et al (2014) Disease burden and risk profile in referred patients with moderate chronic kidney disease: composition of the german chronic kidney disease (GCKD) cohort. Nephrol Dial Transplant 30(3):441–451

    Article  PubMed  Google Scholar 

  16. Schaeffner ES, Ebert N, Delanaye P, Frei U et al (2012) Two novel equations to estimate kidney function in persons aged 70 years or older. Ann Intern Med 157(7):471–481

    Article  PubMed  Google Scholar 

  17. Dörhöfer L, Lammert A, Krane V, Gorski M et al (2013) Study design of DIACORE (DIAbetes COhoRtE) – a cohort study of patients with diabetes mellitus type 2. BMC Med Genet 14(25):1–8

    Google Scholar 

  18. Parsa A, Fuchsberger C, Kottgen A, O’Seaghdha CM et al (2013) Common variants in Mendelian kidney disease genes and their association with renal function. J Am Soc Nephrol 24(12):2105–2117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Pattaro C, Kottgen A, Teumer A, Garnaas M et al (2012) Genome-wide association and functional follow-up reveals new loci for kidney function. Plos Genet 8(3):e1002584

    Article  PubMed  PubMed Central  Google Scholar 

  20. Köttgen A, Glazer NL, Dehghan A, Hwang SJ et al (2009) Multiple loci associated with indices of renal function and chronic kidney disease. Nat Genet 41(6):712–717

    Article  PubMed  PubMed Central  Google Scholar 

  21. Trudu M, Janas S, Lanzani C, Debaix H et al (2013) Common noncoding UMOD gene variants induce salt-sensitive hypertension and kidney damage by increasing uromodulin expression. Nat Med 19(12):1655–1660

    Article  CAS  PubMed  Google Scholar 

  22. Kottgen A, Hwang SJ, Larson MG, Van Eyk JE et al (2010) Uromodulin levels associate with a common UMOD variant and risk for incident CKD. J Am Soc Nephrol 21(2):337–344

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Genovese G, Friedman DJ, Ross MD, Lecordier L et al (2010) Association of trypanolytic ApoL1 variants with kidney disease in African Americans. Science 329(5993):841–845

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Parsa A, Kao WH, Xie D, Astor BC et al (2013) APOL1 risk variants, race, and progression of chronic kidney disease. N Engl J Med 369(23):2183–2196

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Böger CA, Chen MH, Tin A, Olden M et al (2011) CUBN is a gene locus for albuminuria. J Am Soc Nephrol 22(3):555–570

    Article  PubMed  PubMed Central  Google Scholar 

  26. Teumer A, Tin A, Sorice R, Gorski M et al (2016) Genome-wide association studies identify genetic loci associated with Albuminuria in diabetes. Diabetes 65(3):803–817. doi:10.2337/db15-1313

    Article  CAS  PubMed  Google Scholar 

  27. Cornec-Le Gall E, Audrezet MP, Rousseau A, Hourmant M et al (2016) The PROPKD score: a new algorithm to predict renal survival in autosomal dominant polycystic kidney disease. J Am Soc Nephrol 27(3):942–951 doi:10.1681/ASN.2015010016

    Article  PubMed  Google Scholar 

  28. Heyer CM, Sundsbak JL, Abebe KZ, Chapman AB et al (2016) Predicted mutation strength of nontruncating PKD1 mutations aids genotype-phenotype correlations in autosomal dominant polycystic kidney disease. J Am Soc Nephrol pii:ASN.2015050583 (Epub ahead of print)

    Google Scholar 

  29. Jais JP, Knebelmann B, Giatras I, De Marchi M et al (2003) X‑linked Alport syndrome: natural history and genotype-phenotype correlations in girls and women belonging to 195 families: a “European Community Alport Syndrome Concerted Action” study. J Am Soc Nephrol 14(10):2603–2610

    Article  PubMed  Google Scholar 

  30. Torra R, Tazon-Vega B, Ars E, Ballarin J (2004) Collagen type IV (alpha3-alpha4) nephropathy: from isolated haematuria to renal failure. Nephrol Dial Transplant 19(10):2429–2432

    Article  PubMed  Google Scholar 

  31. Gross O, Netzer KO, Lambrecht R, Seibold S et al (2002) Meta-analysis of genotype-phenotype correlation in X‑linked Alport syndrome: impact on clinical counselling. Nephrol Dial Transplant 17(7):1218–1227

    Article  PubMed  Google Scholar 

  32. Bekheirnia MR, Reed B, Gregory MC, McFann K et al (2010) Genotype-phenotype correlation in X‑linked Alport syndrome. J Am Soc Nephrol 21(5):876–883

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Lewis EJ, Hunsicker LG, Bain RP, Rohde RD (1993) The effect of angiotensin-converting-enzyme inhibition on diabetic nephropathy. The Collaborative Study Group. N Engl J Med 329(20):1456–1462

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. A. Böger.

Ethics declarations

Interessenkonflikt

C.A. Böger gibt an, dass kein Interessenkonflikt besteht.

Dieser Beitrag beinhaltet keine vom Autor durchgeführten Studien an Menschen oder Tieren.

Additional information

Redaktion

J. Lutz, Mainz

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Böger, C.A. Progression chronischer Nierenerkrankungen. Nephrologe 11, 252–259 (2016). https://doi.org/10.1007/s11560-016-0056-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11560-016-0056-3

Schlüsselwörter

Keywords

Navigation