Skip to main content
Log in

Renale Denervierung und Hypertonie

Ist nach Simplicity-3 alles vorbei?

Renal denervation and hypertension

Is everything over after Simplicity-3?

  • Leitthema
  • Published:
Der Nephrologe Aims and scope

Zusammenfassung

Wenig neue Methoden der antihypertensiven Therapie haben in den letzten Jahren zu so viel Diskussion geführt wie die sog. renale Denervierung der sympathischen Nervenfasern. Die Stimulation des Sympathikus beeinflusst die Funktion der Niere durch die Freisetzung von Renin, eine gesteigerte Aufnahme von NaCl und durch Vasokonstriktion der renalen Widerstandsgefäße. Diese Mechanismen steigern den Blutdruck und sollen durch die Ablation der Nervenfasern blockiert werden. Die Entwicklung einer sicheren Ablationsmethode beim Menschen in den letzten Jahren hat dieses Verfahren klinisch einsetzbar gemacht. In den ersten klinischen Studien hat dieses Verfahren beeindruckende Blutdruckabfälle gezeigt. Diese therapeutische Wirksamkeit war in diesen Studien auch noch nach Jahren nachweisbar. Darüber hinaus konnten positive Wirkungen auf andere, durch den Sympathikus verursachte, Probleme wie den Glukosemetabolismus und die Schlafapnoe nachgewiesen werden. Allerdings zeigten sich bereits in den ersten kontrollierten Untersuchungen teilweise „therapieresistente“ Patienten. In der ersten großen randomisierten, doppelblind durchgeführten Studie (Simplicity-3) konnte keine therapeutische Wirkung der Nervenablation auf den Blutdruck nachgewiesen werden. Dem stehen Registerdaten und unkontrollierte Befunde mit einer sehr ausgeprägten therapeutischen Wirksamkeit entgegen. Erklärungen für den negativen Ausgang von Simplicity-3 sind vielfältig und reichen von Compliance bis zum Versagen der Methode in dieser Studie. Es wird notwendig sein, die „ansprechbaren“ Patienten zu definieren, diese mit geeigneten diagnostischen Methoden zu charakterisieren und diese dann in kontrollierte Studien einzuschleusen. Bis dahin hat das Verfahren der renalen Ablation einen experimentellen Charakter.

Abstract

Catheter-based renal nerve ablation can lower blood pressure (BP) in hypertensive patients. The concept is based on solid physiological studies suggesting that efferent and afferent renal nerves contribute to arterial hypertension. The preliminary results on the efficacy and safety of catheter-based renal nerve ablation on BP control in resistant hypertension have been encouraging; however, these studies were uncontrolled. In several small studies it was observed early that most patients can be controlled by pharmaceutical treatment and only a few patients respond to ablation therapy. A large prospective trial with a control group (sham treatment) was therefore necessary. The Simplicity-3 trial fulfilled these criteria. More than 600 patients were successfully studied and in March 2014 the results were published. No significant differences between the two groups were observed, one treated with renal nerve ablation and the other group controlled only by medication. These results are in contrast to the previous (uncontrolled) studies and observations from a worldwide registry. Several explanations have been put forward to explain these results. Important are (1) compliance, i.e. patients taking their medication during the study and also (2) inexperience with the method in small centers. Simplicity-3 has put a halt on using renal denervation in most countries. It is now important to find out why the method only works in some patients, what the criteria to use it are and to define a patient group where renal denervation is useful as a therapeutic method to treat patients with hypertension.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1

Literatur

  1. Kandzari DE, Bhatt DL, Sobotka PA et al (2012) Catheter-based renal denervation for resistant hypertension: rationale and design of the SYMPLICITY HTN-3 trial. Clin Cardiol 35:528–535

    Article  PubMed  Google Scholar 

  2. Krum H, Schlaich M, Whitbourn R et al (2009) Catheter-based renal sympathetic denervation for resistant hypertension: a multicentre safety and proof-of-principle cohort study. Lancet 373:1275–1281

    Article  PubMed  Google Scholar 

  3. Krum H, Schlaich MP, Sobotka PA et al (2014) Percutaneous renal denervation in patients with treatment-resistant hypertension: final 3-year report of the Symplicity HTN-1 study. Lancet 383:622–629

    Article  PubMed  Google Scholar 

  4. Symplicity HTN-2 Investigators, Esler MD, Krum H et al (2010) Renal sympathetic denervation in patients with treatment-resistant hypertension (The Symplicity HTN-2 Trial): a randomised controlled trial. Lancet 376:1903–1909

    Article  Google Scholar 

  5. Gulati V, White WB (2013) Review of the state of renal nerve ablation for patients with severe and resistant hypertension. J Am Soc Hypertens 7:484–493

    Article  PubMed  Google Scholar 

  6. Bhatt DL, Kandzari DE, O’Neill WW et al (2014) A controlled trial of renal denervation for resistant hypertension. N Engl J Med 370:1393–1401

    Article  CAS  PubMed  Google Scholar 

  7. diBona G (2010) Physiology in perspective: the wisdom of the body. Am J Physiol 298:R245–R253

    CAS  Google Scholar 

  8. Bernard C (1859) Leçons sur les Propriétés et les Altérations Pathologiques des Liquides de L’Organisme. Bailliére et Fils, Paris 2:170–171

  9. Starling EH (1909) The chemical control of the body. Harvey Lectures 1907–1908. Lippincott, New York, S 115–131

  10. Muller J, Barajas L (1972) Electron microscopic and histochemical evidence for a tubular innervation in the renal cortex of the monkey. J Ultrastruct Res 41:533–549

    Article  CAS  PubMed  Google Scholar 

  11. Barajas L, Liu L, Powers K (1992) Anatomy of the renal innervation: intrarenal aspects and ganglia of origin. Can J Physiol Pharmacol 70:735–749

    CAS  PubMed  Google Scholar 

  12. diBona G, Esler M (2010) Translational medicine. The antihypertensive effect of renal denervation. Am J Physiol 298:R245–R253

    CAS  Google Scholar 

  13. Cowley AW (1992) Long term control of arterial blood pressure. Physiol Rev 72:231–300

    PubMed  Google Scholar 

  14. Campese VM, Kogosov E (1995) Renal afferent denervation prevents hypertension in rats with chronic renal failure. Hypertension 25:878–882

    Article  CAS  PubMed  Google Scholar 

  15. Kopp UC, Jones SY, DiBona GF (2008) Afferent renal denervation impairs baroreflex control of efferent renal sympathetic nerve activity. Am J Physiol Regul Integr Comp Physiol 295:R1882–R1890

    CAS  PubMed Central  PubMed  Google Scholar 

  16. Esler M, Jennings G, Korner P et al (1988) The assessment of human sympathetic nervous system activity from measurements of norepinephrine turnover. Hypertension 11:3–20

    Article  CAS  PubMed  Google Scholar 

  17. Grassi G, Colombo M, Seravalle G et al (1998) Dissociation between muscle and skin sympathetic nerve activity in essential hypertension, obesity, and congestive heart failure. Hypertension 31:64–67

    Article  CAS  PubMed  Google Scholar 

  18. Stella A, Zanchetti A (1991) Functional role of renal afferents. Physiol Rev 71:659–682

    CAS  PubMed  Google Scholar 

  19. Smithwick RH, Bush RD, Kinsey D, Whitelaw GP (1956) Hypertension and associated cardiovascular disease; comparison of male and female mortality rates and their influence on selection of therapy. J Am Med Assoc 160:1023–1026

    Article  CAS  PubMed  Google Scholar 

  20. Schlaich MP, Sobotka PA, Krum H et al (2009) Renal sympathetic-nerve ablation for uncontrolled hypertension. N Engl J Med 361:932–934

    Article  CAS  PubMed  Google Scholar 

  21. Brinkmann J, Heusser K, Schmidt BM et al (2012) Catheter-based renal nerve ablation and centrally generated sympathetic activity in difficult-to-control hypertensive patients: prospective case series. Hypertension 60:1485–1490

    Article  CAS  PubMed  Google Scholar 

  22. Fadl Elmula FE, Hoffmann P, Fossum E et al (2013) Renal sympathetic denervation in patients with treatment-resistant hypertension after witnessed intake of medication before qualifying ambulatory blood pressure. Hypertension 62:526–532

    Article  Google Scholar 

  23. Fadl Elmula FE, Hoffmann P, Larstorp AC et al (2014) Adjusted drug treatment is superior to renal sympathetic denervation in patients with true treatment-resistant hypertension. Hypertension 63:991–999

    Article  Google Scholar 

  24. Luft FC (2014) SIMPLICITY: not all that simple. Kidney Int 85:999–1001

    Article  CAS  PubMed  Google Scholar 

  25. Witkowski A, Prejbisz A, Florczak E et al (2011) Effects of renal sympathetic denervation on blood pressure, sleep apnea course, and glycemic control in patients with resistant hypertension and sleep apnea. Hypertension 58:559–565

    Article  CAS  PubMed  Google Scholar 

  26. Linz D, Mahfoud F, Schotten U et al (2012) Renal sympathetic denervation suppresses postapneic blood pressure rises and atrial fibrillation in a model for sleep apnea. Hypertension 60:172–178

    Article  CAS  PubMed  Google Scholar 

  27. Mahfoud F, Cremers B, Janker J et al (2012) Renal hemodynamics and renal function after catheter-based renal sympathetic denervation in patients with resistant hypertension. Hypertension 60:419–424

    Article  CAS  PubMed  Google Scholar 

  28. Hering D, Mahfoud F, Walton AS et al (2012) Renal denervation in moderate to severe CKD. J Am Soc Nephrol 23:1250–1257

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Brandt MC, Hoppe UC, Vonend O et al (2011) Effect of renal sympathetic denervation on glucose metabolism in patients with resistant hypertension: a pilot study. Circulation 123:1940–1946

    Article  PubMed  Google Scholar 

  30. Brandt MC, Mahfoud F, Reda S et al (2012) Renal sympathetic denervation reduces left ventricular hypertrophy and improves cardiac function in patients with resistant hypertension. J Am Coll Cardiol 59:901–909

    Article  PubMed  Google Scholar 

  31. Ott C, Janka R, Schmid A et al (2013) Vascular and renal hemodynamic changes after renal denervation. Clin J Am Soc Nephrol 8:1195–1201

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Einhaltung ethischer Richtlinien

Interessenkonflikt. H. Haller und F. Limbourg geben an, dass kein Interessenkonflikt besteht. J. Menne hat die Firma CVRx als Interessenkonflikt angegeben. B.M. Schmidt hat Honorare von den Firmen Novartis, Daichii Sankyo und Berlin-Chemie Menarini erhalten,

Dieser Beitrag beinhaltet keine Studien an Menschen oder Tieren.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Haller.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Haller, H., Menne, J., Limbourg, F. et al. Renale Denervierung und Hypertonie. Nephrologe 9, 350–356 (2014). https://doi.org/10.1007/s11560-014-0874-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11560-014-0874-0

Schlüsselwörter

Keywords

Navigation