Skip to main content
Log in

Hymenoscyphus fraxineus and two new Hymenoscyphus species identified in Korea

  • Original Article
  • Published:
Mycological Progress Aims and scope Submit manuscript

Abstract

Hymenoscyphus fraxineus is an invasive fungal pathogen that causes ash dieback in Europe. Recent investigations have identified H. fraxineus on herbarium specimens in Korea. In this paper, these specimens, plus five additional collections, were studied by internal transcribed spacer (ITS) screening and subsequent phylogenetic analysis using three additional sequence markers (actin, calmodulin, EF1-α). Using the concept of genealogical concordance phylogenetic species recognition (GCPSR), H. fraxineus was confirmed in five of the collections on petioles of Fraxinus mandshurica and F. chinensis subsp. rhynchophylla. The remaining collections revealed two novel species, both occurring on petioles of F. chinensis subsp. rhynchophylla. They are described as Hymenoscyphus occultus sp. nov. and Hymenoscyphus koreanus sp. nov., based on morphological and molecular data. Both develop a Chalara-like anamorph similar to that of H. fraxineus. Together with the newly described H. albidoides from China and H. linearis from Japan, the clade containing H. fraxineus now consists of six species. Within this clade, H. koreanus forms a sister species to H. albidus and both share highly similar morphological and molecular features. Hymenoscyphus occultus is more distantly related to H. fraxineus and shows proximity to H. linearis. Ascocarp production on ash leaf malt-extract agar could be shown for the two new species, and for H. linearis and H. albidus. The experiment demonstrated these species’ ability to self-fertilize. Our findings suggest the diversity of Hymenoscyphus species on Fraxinus sp. might be higher than currently known, calling for further investigations on petioles of other Fraxinus species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Baral H-O, Queloz V, Hosoya T (2014) Hymenoscyphus fraxineus, the correct scientific name for the fungus causing ash dieback in europe. IMA Fungus 5(1):79–80. doi:10.5598/imafungus.2014.05.01.09

    Article  PubMed Central  PubMed  Google Scholar 

  • Baral HO (1987) Der Apikalapparat der Helotiales - Eine lichtmikroskopische Studie über Arten mit Amyloidring. Zeitschrift für Mykologie 53(1):119–135

    Google Scholar 

  • Baral HO (1996) Hymenoscyphus seminis-alni, a new species of the H. fructigenus-complex. Mycotaxon 60:249–256

    Google Scholar 

  • Baral HO, Bemmann M (2014) Hymenoscyphus fraxineus vs. Hymenoscyphus albidus - A comparative light microscopic study on the causal agent of European ash dieback and related foliicolous, stroma-forming species. Mycology 5(4):228–290. doi:10.1080/21501203.2014.963720

    Article  PubMed Central  PubMed  Google Scholar 

  • Barnes I, Crous PW, Wingfield BD, Wingfield MJ (2004) Multigene phylogenies reveal that red band needle blight of Pinus is caused by two distinct species of Dothistroma, D. septosporum and D. pini. Stud Mycol 50:551–565

    Google Scholar 

  • Carbone I, Kohn LM (1999) A method for designing primer sets for speciation studies in filamentous ascomycetes. Mycologia 91(3):553–556. doi:10.2307/3761358

    Article  CAS  Google Scholar 

  • Dlugosch KM, Parker IM (2008) Founding events in species invasions: genetic variation, adaptive evolution, and the role of multiple introductions. Mol Ecol 17(1):431–449. doi:10.1111/j.1365-294X.2007.03538.x

    Article  CAS  PubMed  Google Scholar 

  • Drummond A, Rambaut A (2008) Tracer [Online]. Available at: http://beast.bio.ed.ac.uk/Tracer. Accessed 25 October 2013

  • Gross A, Holdenrieder O (2013) On the longevity of Hymenoscyphus pseudoalbidus in petioles of Fraxinus excelsior. Forest Pathol 43(2):168–170. doi:10.1111/efp.12022

    Article  Google Scholar 

  • Gross A, Holdenrieder O, Pautasso M, Queloz V, Sieber TN (2014a) Hymenoscyphus pseudoalbidus, the causal agent of ash dieback. Mol Plant Pathol 15(1):109–117

    Article  Google Scholar 

  • Gross A, Hosoya T, Queloz V (2014b) Population structure of the invasive forest pathogen Hymenoscyphus pseudoalbidus. Mol Ecol 23(12):2943–2960. doi:10.1111/mec.12792

    Article  PubMed  Google Scholar 

  • Gross A, Hosoya T, Zhao j, Baral HO (2014, accepted article) Hymenoscyphus linearis sp. nov. – Another close relative of the ash dieback pathogen H. fraxineus. Mycol Progr

  • Gross A, Zaffarano PL, Duo A, Grünig CR (2012) Reproductive mode and life cycle of the ash dieback pathogen Hymenoscyphus pseudoalbidus. Fungal Genet Biol 49(12):977–986. doi:10.1016/j.fgb.2012.08.008

    Article  CAS  PubMed  Google Scholar 

  • Grünig CR, Linde CC, Sieber TN, Rogers SO (2003) Development of single-copy RFLP markers for population genetic studies of Phialocephala fortinii and closely related taxa. Mycol Res 107(11):1332–1341

    Article  PubMed  Google Scholar 

  • Grünig CR, McDonald BA, Sieber TN, Rogers SO, Holdenrieder O (2004) Evidence for subdivision of the root-endophyte Phialocephala fortinii into cryptic species and recombination within species. Fungal Genet Biol 41(7):676–687

    Article  PubMed  Google Scholar 

  • Han J-G, Shrestha B, Hosoya T, Lee H-K, Sung G-H, Shin H-D (2014) First report of the ash dieback pathogen Hymenoscyphus fraxineus in Korea. Microbiology 42(4):391–396

    Google Scholar 

  • Hosoya T, Otani Y, Furuya K (1993) Materials for the fungus flora of Japan (46). T Mycol Soc Jpn 34(4):429–432

    Google Scholar 

  • Husson C, Scala B, Cael O, Frey P, Feau N, Ioos R, Marcais B (2011) Chalara fraxinea is an invasive pathogen in France. Eur J Plant Pathol 130(3):311–324. doi:10.1007/s10658-011-9755-9

    Article  Google Scholar 

  • Kirisits T, Dämpfle L, Kräutler K (2013) Hymenoscyphus albidus is not associated with an anamorphic stage and displays slower growth than Hymenoscyphus pseudoalbidus on agar media. Forest Pathol 43(5):386–389. doi:10.1111/efp.12042

    Google Scholar 

  • Kowalski T (2006) Chalara fraxinea sp. nov. associated with dieback of ash (Fraxinus excelsior) in Poland. Forest Pathol 36(4):264–270

    Article  Google Scholar 

  • Lanfear R, Calcott B, Ho SYW, Guindon S (2012) PartitionFinder: combined selection of partitioning schemes and substitution models for phylogenetic analyses. Mol Biol Evol 29(6):1695–1701. doi:10.1093/molbev/mss020

    Article  CAS  PubMed  Google Scholar 

  • Leach CM (1971) A practical guide to the effects of visible and ultraviolet light on fungi. In: Booth C (ed) Methods in microbiology, vol Volume 4. Academic, New York, pp 609–664. doi:10.1016/s0580-9517(09)70028-5

    Google Scholar 

  • Marčiulynienė D, Cleary MR, Shabunin D, Stenlid J, Vasaitis R Detection of Hymenoscyphus pseudoalbidus in Primorye region, far east Russia; COST Action FP1103 Fraxback 4th MC meeting & workshop "Frontiers in ash dieback research”, 4-6th of September 2013, Malmö, Sweden; accessed online 21.01.2014 http://www.fraxback.eu/. 2013. p 42

  • McKinney LV, Thomsen IM, Kjær ED, Bengtsson SBK, Nielsen LR (2012) Rapid invasion by an aggressive pathogenic fungus (Hymenoscyphus pseudoalbidus) replaces a native decomposer (Hymenoscyphus albidus): a case of local cryptic extinction? Fungal Ecol 5(6):663–669. doi:10.1016/j.funeco.2012.05.004

    Article  Google Scholar 

  • Olson Å, Stenlid J (2002) Pathogenic fungal species hybrids infecting plants. Microb Infect 4(13):1353–1359

    Article  CAS  Google Scholar 

  • Oono R, Lutzoni F, Arnold AE, Kaye L, U’Ren JM, May G, Carbone I (2014) Genetic variation in horizontally transmitted fungal endophytes of pine needles reveals population structure in cryptic species. Am J Bot 101(8):1362–1374. doi:10.3732/ajb.1400141

    Article  PubMed  Google Scholar 

  • Queloz V, Grünig CR, Berndt R, Kowalski T, Sieber TN, Holdenrieder O (2011) Cryptic speciation in Hymenoscyphus albidus. Forest Pathol 41(2):133–142. doi:10.1111/j.1439-0329.2010.00645.x

    Article  Google Scholar 

  • Ronquist F, Teslenko M, van der Mark P, Ayres DL, Darling A, Höhna S, Larget B, Liu L, Suchard MA, Huelsenbeck JP (2012) MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Syst Biol 61(3):539–542. doi:10.1093/sysbio/sys029

    Article  PubMed Central  PubMed  Google Scholar 

  • Stamatakis A (2006) RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 22(21):2688–2690. doi:10.1093/bioinformatics/btl446

    Article  CAS  PubMed  Google Scholar 

  • Stergiopoulos I, Gordon TR (2014) Cryptic fungal infections: the hidden agenda of plant pathogens. Front Plant Sci 5:1–4

    Article  Google Scholar 

  • Taylor JW, Jacobson DJ, Kroken S, Kasuga T, Geiser DM, Hibbett DS, Fisher MC (2000) Phylogenetic species recognition and species concepts in fungi. Fungal Genet Biol 31(1):21–32. doi:10.1006/fgbi.2000.1228

    Article  CAS  PubMed  Google Scholar 

  • Taylor JW, Turner E, Townsend JP, Dettman JR, Jacobson D (2006) Eukaryotic microbes, species recognition and the geographic limits of species: examples from the kingdom Fungi. Philos T Roy Soc B 361(1475):1947–1963. doi:10.1098/rstb.2006.1923

    Article  Google Scholar 

  • Wallander E (2008) Systematics of Fraxinus (Oleaceae) and evolution of dioecy. Plant Syst Evol 273(1):25–49. doi:10.1007/s00606-008-0005-3

    Article  Google Scholar 

  • White TJ, Bruns T, Lee S, Taylor J (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA et al (eds) PCR protocols: A guide to methods and applications. Academic Press, Inc, San Diego and London, pp 315–322

    Chapter  Google Scholar 

  • Zhao Y-J, Hosoya T, Baral H-O, Hosaka K, Kakishima M (2012) Hymenoscyphus pseudoalbidus, the correct name for Lambertella albida reported from Japan. Mycotaxon 122:25–41. doi:10.5248/122.25

    Article  Google Scholar 

  • Zheng H-D, Zhuang W-Y (2013) Hymenoscyphus albidoides sp. nov. and H. pseudoalbidus from China. Mycol Progr 13(3):625–638. doi:10.1007/s11557-013-0945-z

    Article  Google Scholar 

Download references

Acknowledgments

We would like to thank O. Holdenrieder, T. Hosoya and V. Queloz for helpful discussions and suggestions; M. Berchtold, A. Duo and S. Stroheker for excellent technical assistance; H.O. Baral and an anonymous reviewer for constructive comments on a previous manuscript draft and C. Syrad for manuscript proofreading. We further acknowledge the Genetic Diversity Center of ETH Zurich for providing laboratory facilities. This study was supported by a grant from ETH Zurich (ETH-04 10–1).

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Gross.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Online Resource 1

Multiple sequence alignment of the ITS 1 and 2 rDNA region incorporating all samples but H. fructigenus strain CBS_650.92, used to identify unique molecular characters of the two new species H. koreanus and H. occultus. (JPEG 1221 kb)

Online Resource 2

Multiple sequence alignment of the calmodulin gene incorporating all samples but H. fructigenus strain CBS_650.92, used to identify unique molecular characteristics of the two new species H. koreanus and H. occultus. (JPEG 1004 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gross, A., Han, J.G. Hymenoscyphus fraxineus and two new Hymenoscyphus species identified in Korea. Mycol Progress 14, 19 (2015). https://doi.org/10.1007/s11557-015-1035-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11557-015-1035-1

Keywords

Navigation