Skip to main content
Log in

Genetic variability among populations of Fusicladium species from different host trees and geographic locations in the USA

  • Original Article
  • Published:
Mycological Progress Aims and scope Submit manuscript

Abstract

Peach and almond scab caused by Venturia carpophila and pecan scab caused by Fusicladium effusum result in yield loss, downgrading of fruit, defoliation and subsequent decline of an orchard. To understand the levels of genetic diversity and divergence of pathogens from different hosts and locations 51 isolates were genotyped and analyzed using 10 RAPD and 5 UP-PCR markers, including 18 isolates of V. carpophila from peach trees in the southeastern United States, 12 isolates of V. carpophila from almond trees in California, and 21 isolates of F. effusum (a related species) from pecan trees in the southeastern United States. The combined marker results showed a low incidence of polymorphisms among the peach isolates (4.2 % of markers), but a higher incidence of polymorphisms among the almond isolates (42.0 %) and the pecan isolates (61.0 %). The Dice coefficient of similarity ranged from 0.932 to 1.000 for the peach V. carpophila isolates, 0.214 to 0.976 for the almond V. carpophila isolates, and 0.528 to 0.920 for the pecan F. effusum isolates. UPGMA bootstrap values indicated that UP-PCR data were slightly more robust and, based on the combined data, the UPGMA bootstrap analysis (1,000 runs) gave a high node value (100 %) differentiating all the isolates of V. carpophila from F. effusum and a moderate node value differentiating the peach and almond isolates of V. carpophila (68 %). The results suggest some divergence between the V. carpophila populations of almond trees in California and peach tree populations in the southeastern United States, and different levels of genetic diversity within the two populations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Adaskaveg JA (2002) Scab. In: Teviotdale BL, Michailides TJ, Pscheidt JW (ed) Compendium of nut crop diseases in temperate zones - Part II. Almond diseases. APS Press, pp 29–30

  • Adaskaveg J, Gubler D, Michailides T (2013) Fungicide, bactericide, biological tables for fruit, nut, strawberry, vine crops. University of California, pp 1–54 http://www.ipm.ucdavis.edu/PDF/PMG/fungicideefficacytiming.pdf

  • Arnau J, Housego AP, Oliver RP (1994) The use of RAPD markers in the genetic analysis of the plant pathogenic fungus Cladosporium fulvum. Curr Genet 25:438–444

    Article  CAS  PubMed  Google Scholar 

  • Baskarathevan J, Jaspers MV, Jones EE, Cruickshank RH, Ridgway HJ (2012) Genetic, pathogenic diversity of Neofusicoccum parvum in New Zealand vineyards. Fungal Biology 116:276–288

    Article  CAS  PubMed  Google Scholar 

  • Beck A, Ritschel A, Schubert K, Braun U, Triebel D (2005) Phylogenetic relationships of the anamorphic genus Fusicladium s. lat. as inferred by ITS nrDNA data. Mycol Prog 4:111–116

    Article  Google Scholar 

  • Beigmohamadi M, Rahmani F (2011) Genetic variation in hawthorn (Crataegus spp.) using RAPD markers. Afr J Biotechnol 10:7131–7135

    CAS  Google Scholar 

  • Bertrand PF (2002) Scab. In: Teviotdale BL, Michailides TJ, Pscheidt JW (ed) Compendium of nut crop diseases in temperate zones - Part IV. Pecan diseases. APS Press, pp 55–57

  • Bock CH, Thrall PH, Burdon JJ (2005) Genetic structure of populations of Alternaria brassicicola suggests the occurrence of sexual recombination. Mycol Res 109:227–236

    Article  CAS  PubMed  Google Scholar 

  • Bock CH, Endalew TT, Biswas BK, Yadav AK, Sitther V, Hotchkiss MW, Stevenson KL, Wood BW (2014a) A comparison of UP-PCR, RAPD markers to study genetic diversity of the pecan scab fungus (Fusicladium effusum G. Winter). Forest Pathology: doi: 10.1111/efp.12090

  • Bock CH, Stevenson KL, Arias RS, Wood BW (2014b) Genetic diversity, population structure of Fusicladium effusum on pecan in the U.S.A. Plant Disease. Accepted

  • Borie B, Jacquiot L, Jamaux-Despréaux I, Larignon P, Péros J-P (2002) Genetic diversity in populations of the fungi Phaeomoniella chlamydospora, Phaeoacremonium aleophilum on grapevine in France. Plant Pathol 51:85–96

    Article  Google Scholar 

  • Bulat SA, Lübeck M, Mironenko N, Jensen DF, Lübeck PS (1998) UP-PCR analysis, ITS1 ribotyping of strains of Trichoderma, Gliocladium. Mycol Res 102:933–943

    Article  CAS  Google Scholar 

  • Cumagun CJR, Hockenhull J, Lübeck M (2000) Characterization of Trichoderma isolates from Philippine rice fields by UP-PCR, rDNA-ITS1 analysis: identification of UP-PCR markers. J Phytopathol 148:109–115

    Article  CAS  Google Scholar 

  • Ellsworth DL, Rittenhouse KD, Honeycutt RL (1993) Artifactual variation in randomly amplified polymorphic DNA banding patterns. BioTechniques 14:214–217

    CAS  PubMed  Google Scholar 

  • Excoffier L, Laval G, Schneider S (2005) Arlequin ver. 3.0: An integrated software package for population genetics data analysis. Evol Bioinformatics Online 1:47–50

    CAS  Google Scholar 

  • Fisher EE (1961) Venturia carpophila sp. nov, the ascigerous state of the apricot freckle fungus. Trans Br Mycol Soc 44:337–342

    Article  Google Scholar 

  • Gallego FJ, Pérez MA, Núñez Y, Hidalgo P (2005) Comparison of RAPDs, AFLPs, SSR markers for the genetic analysis of yeast strains of Saccharomyces cerevisiae. Food Microbiol 22:561–568

    Article  Google Scholar 

  • Gladieux P, Zhang X-G, Róldan-Ruiz I, Caffier V, Leroy T, Devaux M, van Glabeke S, Coart E, Le Cam B (2010) Evolution of the population structure of Venturia inaequalis, the apple scab fungus, associated with the domestication of its host. Mol Ecol 19:658–674

    Article  PubMed  Google Scholar 

  • Guo Y-D, Yli-Mattala T, Pulli S (2003) Assessment of genetic variation in Timothy (Phleum pretense L.) using RAPD, UP-PCR. Hereditas 138:101–113

    Article  PubMed  Google Scholar 

  • Hampl V, Pavlíček A, Flegr J (2001) Construction, bootstrap analysis of DNA fingerprinting-based phylogenetic trees with the freeware program FreeTree: application to trichomonad parasites. Int J Syst Evol Microbiol 51:731–735

    Article  CAS  PubMed  Google Scholar 

  • Leal AA, Mangolin CA, do Amaral Junior AT, Gonçalves LSA, Scapim CA, Mott AS, Eloi IBO, Cordovés V, da Silva MFP (2010) Efficiency of RAPD versus SSR markers for determining genetic diversity among popcorn lines. Genet Mol Res 9:9–18

    Article  CAS  PubMed  Google Scholar 

  • Lewontin RC (1972) The apportionment of human diversity. Evol Biol 6:381–398

    Article  Google Scholar 

  • Lübeck PS, Alekhina IA, Lubeck M, Bulat SA (1998) UP-PCR Genotyping, rDNA Analysis of Ascochyta pisi Lib. J Phytopathol 146:51–55

    Article  Google Scholar 

  • Luo Y, Hou L, Förster H, Adaskaveg JE (2013) QoI resistance in Fusicladium carpophilum populations from almond in California, evaluation of molecular resistance mechanisms. Plant Dis 97:1322–1330

    Article  CAS  Google Scholar 

  • Mantel N (1967) The detection of disease clustering, a generalized regression approach. Cancer Res 27:209–220

    CAS  PubMed  Google Scholar 

  • McDonald BA, Linde C (2002a) Pathogen population genetics, the durability of disease resistance. Euphytica 124:163–180

    Article  CAS  Google Scholar 

  • McDonald BA, Linde C (2002b) Pathogen population genetics, evolutionary potential, durable resistance. Annu Rev Phytopathol 40:349–379

    Article  CAS  PubMed  Google Scholar 

  • Mofokeng MA, Watson G, Shimelis H, Tongoona P (2012) Comparison between random amplified polymorphic DNA (RAPD), simple sequence repeat (SSR) markers with high resolution melt analyses in genetic variation analysis among selected sorghum genotypes. Afr J Biotechnol 11:16697–16707

    CAS  Google Scholar 

  • Myśków B, Milczarski P, Masojć P (2011) Comparison of RAPD, ISSR, SSR markers in assessing genetic diversity among rye (Secale cereale L.) inbred lines. Plant Breeding. Seed Science 62:107–115

    Google Scholar 

  • National Agricultural Statistics Service (2013) Noncitrus fruits, nuts. 2012 Preliminary summary (January 2013) 79 USDA, National Agricultural Statistics Service. http://usda01.library.cornell.edu/usda/nass/NoncFruiNu//2010s/2013/NoncFruiNu-01-25-2013.pdf

  • Nei M (1973) Analysis of gene diversity in subdivided populations. Proceedings of the National Academy of Sciences, USA, 70:3321–3323

  • Nei M, Li W-H (1979) Mathematical model for studying genetic variation in terms of restriction endonucleases. Proc Natl Acad Sci U S A 76:5269–5273

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Novelo ND, Gomelsky B, Pomper KW (2010) Inheritance, reliability of random amplified polymorphic DNA-markers in two consecutive generations of common carp (Cyprinus carpio L.). Aquac Res 41:220–226

    Article  CAS  Google Scholar 

  • Obanor FO, Walter M, Jones EE, Candy J, Jaspers MV (2010) Genetic variation in Spilocaea oleagina populations from New Zealand olive groves. Australas Plant Pathol 39:508–516

    Article  Google Scholar 

  • Ogawa JM, English H (1991) Diseases of temperate zone tree fruit, nut crops. Univ. of Calif, Div. of Agr., Natural Resources, Oakland, Calif. Publ. 3345

  • Page RDM (1996) TREEVIEW: An application to display phylogenetic trees on personal computers. Comput Appl Biosci 12:357–358

    CAS  PubMed  Google Scholar 

  • Partridge EC, Morgan-Jones G (2003) Notes on Hyphomycetes. xc. Fusicladosporium, a new genus for Cladosporium-like anamorphs of Venturia, the pecan scab-inducing fungus. Mycotaxon 85:357–370

    Google Scholar 

  • Pavlíček A, Hrdá Š, Flegr J (1999) FreeTree – freeware program for construction of phylogenetic trees on the basis of distance data, for bootstrap/jackknife analysis of the trees robustness Application in the RAPD analysis of genus Frenkelia. Folia Biol 45:97–99

    Google Scholar 

  • Pezhmanmehr M, Hassani MI, Jahansooz F, Najafi AA, Sefidkon F, Mardi M, Pirseiedi M (2009) Assessment of genetic diversity in some Iranian populations of Bunium persicum using RAPD, AFLP markers. Iran J Biotechnol 7:93–100

    CAS  Google Scholar 

  • Pottinger B, Stewart A, Carpenter M, Ridgeway HJ (2002) Low genetic variation detected in New Zealand populations of Phaeomoniella chlaydospora. Phytopathology Mediterannea 41:199–211

    CAS  Google Scholar 

  • Powell W, Morgante M, Andre C, Hanafey M, Vogel J, Tingey S, Rafalski A (1996) The comparison of RFLP, RAPD, AFLP, SSR (microsatellite) markers for germplasm analysis. Mol Breed 2:225–238

    Article  CAS  Google Scholar 

  • Salamati S, Zhan J, Burdon JJ, McDonald BA (2000) The genetic structure of field populations of Rhynchosporium secalis from three continents suggests moderate gene flow, regular recombination. Phytopathology 90:901–908

    Article  CAS  PubMed  Google Scholar 

  • Sánchez-Torres P, Hinarejos R, Tuset JJ (2009) Characterization, pathogenicity of Fusicladium eriobotryae, the fungal pathogen responsible for loquat scab. Plant Dis 93:1151–1157

    Article  Google Scholar 

  • Scherm H, Brannen PM (2005) Peach scab. In: Horton D, Johnson D (eds) Southeastern Peach Growers’ Handbook. University of Georgia, College of Agricultural, Environmental Sciences, Athens, pp 134–136

    Google Scholar 

  • Schnabel G, Schnabel EL, Jones AL (1999) Characterization of ribosomal DNA from Venturia inaequalis, its phylogenetic relationship to rDNA from other tree-fruit Venturia species. Phytopathology 89:100–108

    Article  CAS  PubMed  Google Scholar 

  • Schubert K, Ritschel A, Braun U (2003) A monograph of Fusicladium s. lat. (Hyphomycetes). Schlechtendalia 9:1–132

    Google Scholar 

  • Seyran M, Nischwitz C, Lewis KJ, Gitaitis RD, Brenneman TB, Stevenson KL (2010) Phylogeny of the pecan scab fungus Fusicladium effusum G. Winter based on the cytochrome b gene sequence. Mycol Prog 9:305–308

    Article  Google Scholar 

  • Sivanesan A (1977) The taxonomy, pathology of Venturia species. Bibl Mycol 59:1–139

    Google Scholar 

  • Strand LL (1999) Integrated pest management for stone fruit. University of California Division of Agriculture, Natural Resources. Publication 3389:132

    Google Scholar 

  • Tenzer I, Gessler C (1999) Genetic diversity of Venturia inaequalis across Europe. Eur J Plant Pathol 105:545–552

    Article  Google Scholar 

  • USDA (2004) United States standards for grades of peaches. United States Department of Agriculture. Agricultural Marketing Service. Fruit, Vegetable Programs – Fresh Products Branch. P6) http://www.ams.usda.gov/AMSv1.0/getfile?dDocName=STELPRDC5050385

  • Wang XR (1997) Genetic variability in the canker pathogen fungus, Gremmeniella abietina. contribution of sexual compared with asexual reproduction. Mycol Res 101:1195–1201

    Article  Google Scholar 

  • Wang P, Lu Y, Zheng M, Rong T, Tang Q (2011) RAPD, internal transcribed spacer sequence analyses reveal Zea nicaraguensis as a section Luxuriantes species close to Zea luxurians. Plos One 6, e16728) doi:10.1371/journal.pone.0016728

  • Williams JGK, Kubelik AR, Livak KJ, Rafalski JA, Tingey SV (1990) DNA polymorphism amplified by arbitrary primers are useful as genetic markers. Nucleic Acids Res 18:6531–6535

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Xu X, Harvey N, Roberts A, Barbara D (2013) Population variation of apple scab (Venturia inaequalis) within mixed orchards in the UK. Eur J Plant Pathol 135:97–104

    Article  Google Scholar 

  • Yeh C, Yang RC, Boyle T (1999) Popgene Version 1.32) Microsoft Windows-based freeware for population genetic analysis. http://ualberta.ca/~fyeh/index.htm

Download references

Acknowledgments

We appreciate the technical assistance of Minling Zhang and Wanda Evans for pathogen isolation and molecular work. We also appreciate the samples sent by Norman Lalancette (Rutgers University, NJ), Keith Yoder (Virginia Tech University), Guido Schnabel (Clemson University, SC), Kari Peter (Penn State University, PA), Nicole Gauttier (University of Kentucky), Tom Beckman (USDA-ARS, GA), Leigh-Ann Fall (University of Georgia), Mary Olmstead (University of Florida), and the pecan growers who allowed us access their orchards to collect samples of F. effusum.

This article reports the results of research only. Mention of a trademark or proprietary product is solely for the purpose of providing specific information and does not constitute a guarantee or warranty of the product by the U.S. Department of Agriculture and does not imply its approval to the exclusion of other products that may also be suitable.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chunxian Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, C., Bock, C.H., Brannen, P.M. et al. Genetic variability among populations of Fusicladium species from different host trees and geographic locations in the USA. Mycol Progress 13, 1006 (2014). https://doi.org/10.1007/s11557-014-1006-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11557-014-1006-y

Keywords

Navigation