Skip to main content
Log in

Time-based feedback-control framework for real-time video surveillance systems with utilization control

  • Original Research Paper
  • Published:
Journal of Real-Time Image Processing Aims and scope Submit manuscript

Abstract

Multi-camera surveillance systems generally are used by intelligent vision applications to analysis moving objects in the urban environments. Object tracking is an essential component of these applications. Real-time tracking of moving objects in the crowded urban scenes is a challenging problem because the number of moving objects in the scene varies and is usually unpredictable. In order to meet the real-time requirements of intelligent vision applications, it is necessary to control the surveillance workload over processing system and enforce the utilization bound on the system. The utilization control is challenging especially when the workload in the system is unpredictable. The workload for a particular camera depending on the number of targets in its view and execution rate of services that are used to detect and track the moving objects. In this paper, an adaptive real-time system based on the feedback-control framework is proposed to control the system utilization by adjusting input video frame rate that guarantees real-time performance and quality of intelligent vision applications. This approach can handle the workload uncertainties by identifying the parameters of system model online by solving an optimization problem and can simultaneously adjust the frame rate in each sampling period. In each sampling instance, the system utilization is monitored and the error is obtained by comparing it with the set point. The real-time operation of the computing system is achieved by adjusting the input video frame rate to keep the utilization at a given set point slightly below their schedulable bound. Evaluation results demonstrate proposed scheme outperforms the existing schemes especially under workload uncertainties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Wang, X.: Intelligent multi-camera video surveillance: a review. Pattern Recogn. Lett. 34(1), 3–19 (2013)

    Article  Google Scholar 

  2. Song, B., Ding, C., Kamal, A.T., Farrell, J.A., Roy-Chowdhury, A.K.: Distributed camera networks. IEEE Signal Proc. Mag. 28(3), 20–31 (2012)

    Article  Google Scholar 

  3. Wang, G., Tao, L., Di, H., Ye, X., Shi, Y.: A scalable distributed architecture for intelligent vision system. IEEE Trans. Ind. Inform. 8(1), 91–99 (2012)

    Article  Google Scholar 

  4. Xu, R., Guan, Y., Huang, Y.: Multiple human detection and tracking based on head detection for real-time video surveillance. Multimed. Tools Appl. 74(3), 729–742 (2015)

    Article  Google Scholar 

  5. Kumar, P., Pande, A., Mittal, A.: Efficient compression and network adaptive video coding for distributed video surveillance. Multimed. Tools Appl. 56(2), 365–384 (2012)

    Article  Google Scholar 

  6. Lim, M.K., Tang, S., Chan, C.S.: iSurveillance: intelligent framework for multiple events detection in surveillance videos. Expert Syst. Appl. 41(10), 4704–4715 (2014)

    Article  Google Scholar 

  7. Maurin, B., Masoud, O., Papanikolopoulos, N.P.: Tracking all traffic: computer vision algorithms for monitoring vehicles, individuals, and crowds. IEEE Robot Autom. Mag. 12(1), 29–36 (2005)

    Article  Google Scholar 

  8. Georis, B., Bremond, F., Thonnat, M.: Real-time control of video surveillance systems with program supervision techniques. Mach. Vis. Appl. 18(3–4), 189–205 (2007)

    Article  MATH  Google Scholar 

  9. Sarkar, R., Bakshi, S., Sa, P.K.: A real-time model for multiple human face tracking from low-resolution surveillance videos. In: Proceedings of the 2nd International Conference on Communication, Computing and Security, Procedia Technology, vol. 6, pp. 1004–1010 (2012)

  10. Lee, C.Y., Lin, S.J., Lee, C.W., Yang, C.S.: An efficient continuous tracking system in real-time surveillance application. J. Netw. Comput. Appl. 35(3), 1067–1073 (2012)

    Article  Google Scholar 

  11. Huang, D.Y., Chen, C.H., Chen, T.Y., Hu, W.C., Chen, B.C.: Rapid detection of camera tampering and abnormal disturbance for video surveillance system. J. Vis. Commun. Image R. 25(2), 1865–1877 (2014)

    Article  Google Scholar 

  12. Czyzewski, A., Bratoszewski, P., Ciarkowski, A., Cichowski, J., Lisowski, K., Szczodrak, M., Szwoch, G., Krawczyk, H.: Massive surveillance data processing with supercomputing cluster. Inform. Sci. 296, 322–344 (2015)

    Article  Google Scholar 

  13. Vishwakarma, S., Agrawal, A.: A survey on activity recognition and behavior understanding in video surveillance. Vis. Comput. 29(10), 983–1009 (2013)

    Article  Google Scholar 

  14. Handa, A.: Analysing High Frame rate Camera Tracking. Submitted in part fulfillment of the requirements for the degree of Ph.D. in Computing and the Diploma of Imperial College London (2013)

  15. Sha, L., Abdelzaher, T., Arzen, K.E., Cervin, A., Baker, T., et al.: Real time scheduling theory: a historical perspective. Realt. Syst. 28(2–3), 101–155 (2004)

    MATH  Google Scholar 

  16. Zhang, F., Burns, A.: Schedulability analysis for real-time systems with EDF scheduling. IEEE Trans. Comput. 58(9), 1250–1258 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  17. Teng, F.: Ressource Allocation and Schelduling Models for Cloud Computing. Other. Ecole Centrale Paris, 2011. English.<NNT : 2011ECAP0043>.<tel-00659303> (2011)

  18. Vankeirsbilck, B., Verslype, D., Staelens, N., Simoens, P., Develder, C., et al.: Platform for real-time subjective assessment of interactive multimedia applications. Multimed. Tools Appl. 72(1), 749–775 (2014)

    Google Scholar 

  19. Saini, M., Wang, X., Atrey, P.K., Kankanhalli, M.: Adaptive workload equalization in multi-camera surveillance systems. IEEE Trans. Multimed. 14(3), 555–562 (2012)

    Article  Google Scholar 

  20. Wang, X., Chen, Y., Lu, C., Koutsoukos, X.D.: Towards controllable distributed real-time systems with feasible utilization control. IEEE Trans. Comput. 58(8), 1095–1110 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  21. Wang, X., Lu, C., Gill, C.: FCS/nORB: a feedback control real-time scheduling service for embedded ORB middleware. Microprocess. Microsyt. 32(8), 413–424 (2008)

    Article  Google Scholar 

  22. Hossain, M.S.: QoS-aware service composition for distributed video surveillance. Multimed. Tools Appl. 73(1), 169–188 (2014)

    Article  Google Scholar 

  23. Zhu, W., Luo, C., Wang, J., Li, S.: Multimedia cloud computing. IEEE Signal Proc. Mag. 28(3), 59–69 (2011)

    Article  Google Scholar 

  24. Cooharojananone, N., Kasamwattanarote, S., Lipikorn, R., Satoh, S.: Automated real-time video surveillance summarization. J Realt. Image Proc. (2012). doi:10.1007/s11554-012-0280-7

  25. Jianjun, L., Ming, X., Lee, V.C.S., LihChyun, S., Guohui, L.: Workload-efficient deadline and period assignment for maintaining temporal consistency under EDF. IEEE Trans. Comput. 62(6), 1255–1268 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  26. Abdelzaher, T.F., Sharma, V., Chenyang, L.: A utilization bound for aperiodic tasks and priority driven scheduling. IEEE Trans. Comput. 53(3), 334–350 (2004)

    Article  Google Scholar 

  27. Weijia, S., Zhen, X., Qi, C., Haipeng, L.: Adaptive resource provisioning for the cloud using online bin packing. IEEE Trans. Comput. 63(11), 2647–2660 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  28. Yang, R., Mei, R.D., Roubos, D., Seinstra, F.J., Bal, H.E.: Resource optimization in distributed real-time multimedia applications. Multimed. Tools Appl. 59(3), 941–971 (2012)

    Article  Google Scholar 

  29. Cha, H., Oh, J., Ha, R.: Dynamic frame dropping for bandwidth control in MPEG streaming system. Multimed. Tools Appl. 19(2), 155–178 (2003)

    Article  Google Scholar 

  30. Yuen, J.C.H., Chan, E., Lam, K.Y.: Real time video frames allocation in mobile networks using cooperative pre-fetching. Multimed. Tools Appl. 32(3), 329–352 (2006)

    Article  Google Scholar 

  31. Sun, Y., Feng, Z., Ginnavaram, R.R.: A direct nonbuffer rate control algorithm for real time video compression. Multimed. Tools Appl. (2014). doi:10.1007/s11042-014-1913-6

  32. Bellemans, T., Schutter, B.D., Moor, B.D.: Models for traffic control. Control systems engineering. J. A 43(3–4), 13–22 (2002)

    Google Scholar 

  33. Markowski, M.J.: Modeling Behavior in Vehicular and Pedestrian Traffic Flow. A dissertation submitted to the Faculty of the University of Delaware in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Civil Engineering (2008)

  34. Franklin, G.F., Powell, J.D., Workman, M.: Digital Control of Dynamic Systems. Pearson Education, Third edition (fifth Indian reprint) (2005)

  35. PETS (2000–2014) Performance Evaluation of Tracking and Surveillance. http://www.pets2014.net

Download references

Acknowledgments

The authors would like to thank all the co-researchers at HPCRC at Amirkabir University of Technology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seyed Ahmad Motamedi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lotfi, M., Motamedi, S.A. & Sharifian, S. Time-based feedback-control framework for real-time video surveillance systems with utilization control. J Real-Time Image Proc 16, 1301–1316 (2019). https://doi.org/10.1007/s11554-016-0637-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11554-016-0637-4

Keywords

Navigation