Skip to main content
Log in

Efficient parallelization on GPU of an image smoothing method based on a variational model

  • Original Research Paper
  • Published:
Journal of Real-Time Image Processing Aims and scope Submit manuscript

Abstract

Medical imaging is fundamental for improvements in diagnostic accuracy. However, noise frequently corrupts the images acquired, and this can lead to erroneous diagnoses. Fortunately, image preprocessing algorithms can enhance corrupted images, particularly in noise smoothing and removal. In the medical field, time is always a very critical factor, and so there is a need for implementations which are fast and, if possible, in real time. This study presents and discusses an implementation of a highly efficient algorithm for image noise smoothing based on general purpose computing on graphics processing units techniques. The use of these techniques facilitates the quick and efficient smoothing of images corrupted by noise, even when performed on large-dimensional data sets. This is particularly relevant since GPU cards are becoming more affordable, powerful and common in medical environments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

(adapted from [30])

Fig. 3
Fig. 4

(adapted from [41])

Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Notes

  1. CUDA compiler and development suite are available to download through the NVIDIA Web site https://developer.nvidia.com/cuda-downloads.

References

  1. Ma, Z., Tavares, J.M.R.S., Jorge, R.N., Mascarenhas, T.: A review of algorithms for medical image segmentation and their applications to the female pelvic cavity. Comput. Methods Biomech. Biomed. Eng. 13(2), 235–246 (2010)

    Article  Google Scholar 

  2. Erives, H., Fitzgerald, G.J.: Automated registration of hyperspectral images for precision agriculture. Comput. Electron. Agric. 47(2), 103–119 (2005)

    Article  Google Scholar 

  3. Arjona, R., Baturone, I.: A hardware solution for real-time intelligent fingerprint acquisition. J. Real Time Image Process. 9(1), 95–109 (2014)

    Article  Google Scholar 

  4. Chen, L., Zhang, M., Xiong, Z.: Series-parallel pipeline architecture for high-resolution catadioptric panoramic unwrapping. IET Imaging Process. 4(5), 403–412 (2010)

    Article  Google Scholar 

  5. Kunttu, I., Lepisto, L.: Shape-based retrieval of industrial surface defects using angular radius Fourier descriptor. IET Image Proc. 1(2), 231–236 (2007)

    Article  Google Scholar 

  6. Mélange, T., Nachtegael, M., Schulte, S., Kerre, E.E.: A fuzzy filter for the removal of random impulse noise in image sequences. Image Vis. Comput. 29(6), 407–419 (2011)

    Article  MATH  Google Scholar 

  7. Aittokallio, T., Salmi, J., Nyman, T.A., Nevalainen, O.S.: Geometrical distortions in two-dimensional gels: applicable correction methods. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 815(1–2), 25–37 (2005)

    Article  Google Scholar 

  8. Jha, R.K., Biswas, P.K., Chatterji, B.N.: Contrast enhancement of dark images using stochastic resonance. IET Image Process. 6(3), 230–237 (2012)

    Article  MathSciNet  Google Scholar 

  9. Wu, Y.-D., Sun, Y., Zhang, H.-Y., Sun, S.-X.: Variational PDE based image restoration using neural network. IET Image Process. 1(1), 85–93 (2007)

    Article  Google Scholar 

  10. Ezoji, M., Faez, K.: Use of matrix polar decomposition for illumination-tolerant face recognition in discrete cosine transform domain. IET Image Process. 5(1), 25–35 (2011)

    Article  Google Scholar 

  11. Ma, Z., Jorge, R.N.M., Tavares, J.M.R.S.: A shape guided C-V model to segment the levator ani muscle in axial magnetic resonance images. Med. Eng. Phys. 32(7), 766–774 (2010)

    Article  Google Scholar 

  12. Oliveira, F.M.P., Pataky, T.C., Tavares, J.M.R.S.: Registration of pedobarographic image data in the frequency domain. Comput. Methods Biomech. Biomed. Eng. 3(6), 731–740 (2010)

    Article  Google Scholar 

  13. Chen, Q., Sun, Q.-S., Xia, D.-S.: Homogeneity similarity based image denoising. Pattern Recogn 43(12), 4089–4100 (2010)

    Article  MATH  Google Scholar 

  14. Ponomaryov, V.I.: Real-time 2D-3D filtering using order statistics based algorithms. J. Real Time Image Process. 1(3), 173–194 (2007)

    Article  Google Scholar 

  15. Fontes, F.P.X., Barroso, G.A., Coupé, P., Hellier, P.: Real-time ultrasound image denoising. J. Real Time Image Process. 6(1), 15–22 (2011)

    Article  Google Scholar 

  16. Merigot, A., Petrosino, A.: Parallel processing for image and video processing: issues and challenges. Parallel Comput. 34(12), 694–699 (2008)

    Article  Google Scholar 

  17. López-Rubio, E.: Restoration of images corrupted by Gaussian and uniform impulsive noise. Pattern Recogn. 43(5), 1835–1846 (2010)

    Article  MATH  Google Scholar 

  18. Jin, Z., Yang, X.: A variational model to remove the multiplicative noise in ultrasound images. J. Math. Imaging Vis. 39(1), 62–74 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  19. NVIDIA: GPU Tutorial: Build environment, Debugging/Profiling, Fermi, Optimization/CUDA 3.1 and Fermi advice (2010)

  20. Wilt, N.: The CUDA Handbook: A Comprehensive Guide to GPU Programming. Addison-Wesley, Reading (2013)

    Google Scholar 

  21. Castano-Diez, D., Moser, D., Schoenegger, A., Pruggnaller, S., Frangakis, A.S.: Performance evaluation of image processing algorithms on the GPU. J. Struct. Biol. 164(1), 153–160 (2008)

    Article  Google Scholar 

  22. Triantafyllidis, G.A., Varnuska, M., Sampson, D., Tzovaras, D., Strintzis, M.G.: An efficient algorithm for the enhancement of JPEG-coded images. Comput. Graph. 27(4), 529–534 (2003)

    Article  Google Scholar 

  23. Ji, J.: Robust approach to independent component analysis for SAR image analysis. IET Image Process. 6(3), 284–291 (2012)

    Article  MathSciNet  Google Scholar 

  24. Aubert, G.A.J., Aujol, J.-F.: A variational approach to removing multiplicative noise. SIAM J. Appl. Math. 68(4), 925–946 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  25. Huang, Y.-M., Ng, M.K., Wen, Y.-W.: A new total variation method for multiplicative noise removal. SIAM J. Imaging Sci. 2(1), 20–40 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  26. Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. J. Phys. D 60(1–4), 259–268 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  27. Krissian, K., Kikinis, R., Westin, C.-F., Vosburgh, K.: Speckle-constrained filtering of ultrasound images. In: Proceedings of the 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (2005)

  28. Eckert, M.P., Bradley, A.P.: Perceptual quality metrics applied to still image compression. Signal Process. 70(3), 177–200 (1998)

    Article  MATH  Google Scholar 

  29. Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: Image quality assessment: from error visibility to structural similarity. IEEE Trans. Image Process. 13(4), 600–612 (2004)

    Article  Google Scholar 

  30. Oliveira, F.P.M., Tavares, J.M.R.S.: Medical image registration: a review. Comput. Methods Biomech. Biomed. Eng. 17(2), 73–93 (2014)

    Article  Google Scholar 

  31. Winkler, S.: Issues in vision modeling for perceptual video quality assessment. Signal Process. 78(2), 231–252 (1999)

    Article  MATH  Google Scholar 

  32. Ramponi, G., Strobel, N.K., Mitra, S.K., Yu, T.-H.: Nonlinear unsharp masking methods for image contrast enhancement. J. Electron. Imaging 5(3), 353–367 (1996)

    Article  Google Scholar 

  33. Hashemi, S., Kiani, S., Noroozi, N., Moghaddam, M.E.: An image contrast enhancement method based on genetic algorithm. Pattern Recogn. Lett. 31(13), 1816–1824 (2010)

    Article  Google Scholar 

  34. Ghita, O., Whelan, P.F.: A new GVF-based image enhancement formulation for use in the presence of mixed noise. Pattern Recogn. 43(8), 2646–2658 (2010)

    Article  MATH  Google Scholar 

  35. Shkvarko, Y., Atoche, A.C., Torres-Roman, D.: Near real time enhancement of geospatial imagery via systolic implementation of neural network-adapted convex regularization techniques. Pattern Recogn. Lett. 32(16), 2197–2205 (2011)

    Article  Google Scholar 

  36. Alves, R.S., Tavares, J.M.R.S.: Computer image registration techniques applied to nuclear medicine images. In: Tavares, J.M.R.S., Jorge, R.M.N. (eds.) Computational and Experimental Biomedical Sciences: Methods and Applications, vol. 21, pp. 173–191. Springer, New York (2015)

    Chapter  Google Scholar 

  37. Nakhmani, A., Tannenbaum, A.: A new distance measure based on generalized image normalized cross-correlation for robust video tracking and image recognition. Pattern Recogn. Lett. 34(3), 315–321 (2013)

    Article  Google Scholar 

  38. Wang, Z., Bovik, A.C., Lu, L.: Why is image quality assessment so difficult. In: ICASSP International Conference on Acoustics, Speech, and Signal Processing (2002)

  39. Zhang, L., Dong, W., Zhang, D., Shi, G.: Two-stage image denoising by principal component analysis with local pixel grouping. Pattern Recogn. 43(4), 1531–1549 (2010)

    Article  MATH  Google Scholar 

  40. Kirk, D., Hwu, W.-M.: Programming Massively Parallel Processors: A Hands-on Approach, p. 75. Elsevier, Amsterdam (2010)

    Google Scholar 

  41. Park, I.K., Singhal, N., Lee, M.H., Cho, S., Kim, C.W.: Design and performance evaluation of image processing algorithms on GPUs. IEEE Trans. Parallel Distrib. Syst. 22(1), 91–104 (2011)

    Article  Google Scholar 

  42. Hwu, W.-M.W.: GPU Computing GEMS, Emerald ed. Morgan Kaufmann and NVIDIA (2011)

  43. Farber, R.: CUDA Application Design and Development. Elsevier, Amsterdam (2011)

    Google Scholar 

  44. Kehtarnavaz, N., Gamadia, M.N.: Real-time image and video processing: from research to reality, 1st edn. Morgan & Claypool Publishers, University of Texas at Dallas, Dallas (2006)

    Google Scholar 

  45. Levin, D., Aladl, U., Germano, G., Slomka, P.: Techniques for efficient, real-time, 3D visualization of multi-modality cardiac data using consumer graphics hardware. Comput. Med. Imaging Graph. 29(6), 463–475 (2005)

    Article  Google Scholar 

  46. Todorovich, E. Pra, A.L.D., Passoni, L.I., Vázquez, M., Cozzolino, E., Ferrara, F., Bioul, G.: Real-time speckle image processing. J. Real Time Image Process. 11(3), 535–545 (2013)

Download references

Acknowledgments

The first author would like to thank the “Universidade do Estado de Mato Grosso” (UNEMAT), in Brazil, for the support given. The National Scientific and Technological Development Council (CNPq) partially supported this work through process 234360/2014-9 and Grant 2010/15691-0. Henrique Ferraz de Arruda thanks the Coordination for the Improvement of Higher Education Personnel (CAPES) for the financial support received. Authors gratefully acknowledge the funding of Project NORTE-01-0145-FEDER-000022 - SciTech - Science and Technology for Competitive and Sustainable Industries, cofinanced by “Programa Operacional Regional do Norte” (NORTE2020), through “Fundo Europeu de Desenvolvimento Regional” (FEDER).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to João Manuel R. S. Tavares.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gulo, C.A.S.J., de Arruda, H.F., de Araujo, A.F. et al. Efficient parallelization on GPU of an image smoothing method based on a variational model. J Real-Time Image Proc 16, 1249–1261 (2019). https://doi.org/10.1007/s11554-016-0623-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11554-016-0623-x

Keywords

Navigation