Skip to main content
Log in

A multiplierless pruned DCT-like transformation for image and video compression that requires ten additions only

  • Special Issue Paper
  • Published:
Journal of Real-Time Image Processing Aims and scope Submit manuscript

Abstract

A multiplierless pruned approximate eight-point discrete cosine transform (DCT) requiring only ten additions is introduced. The proposed algorithm was assessed in image and video compression, showing competitive performance with state-of-the-art methods. Digital synthesis in 45 nm CMOS technology up to place-and-route level indicates clock speed of 288 MHz at a 1.1 V supply. The \(8\times 8\) block rate is 36 MHz. The DCT approximation was embedded into HEVC reference software; resulting video frames, at up to 327 Hz for 8-bit RGB HEVC, presented negligible image degradation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Rao, K.R., Yip, P.: Discrete Cosine Transform: Algorithms, Advantages. Applications. Academic Press, San Diego (1990)

    Book  MATH  Google Scholar 

  2. Wallace, G.K.: The JPEG still picture compression standard. IEEE Trans. Consum. Electron. 38, xviii–xxxiv (1992)

  3. Roma, N., Sousa, L.: Efficient hybrid DCT-domain algorithm for video spatial downscaling. EURASIP J. Adv. Signal Process. 2007, 057291 (2007)

    Article  MATH  Google Scholar 

  4. International Organisation for Standardisation: Generic coding of moving pictures and associated audio information—part 2: video. ISO/IEC JTC1/SC29/WG11—coding of moving pictures and audio, ISO (1994)

  5. International Telecommunication Union: ITU-T recommendation H.261 version 1: video codec for audiovisual services at \(p \times 64\) kbits. Technical report, ITU-T (1990)

  6. International Telecommunication Union: ITU-T recommendation H.263 version 1: Video coding for low bit rate communication. Technical report, ITU-T (1995)

  7. Wiegand, T., Sullivan, G.J., Bjontegaard, G., Luthra, A.: Overview of the H.264/AVC video coding standard. IEEE Trans. Circuits Syst. Video Technol. 13, 560–576 (2003)

    Article  Google Scholar 

  8. Joint Video Team: Recommendation H.264 and ISO/IEC 14 496–10 AVC: Draft ITU-T recommendation and final draft international standard of joint video specification. Technical report, ITU-T (2003)

  9. International Telecommunication Union: High efficiency video coding: recommendation ITU-T H.265. Technical report, ITU-T series H: audiovisual and multimedia systems (2013)

  10. Pourazad, M.T., Doutre, C., Azimi, M., Nasiopoulos, P.: HEVC: the new gold standard for video compression: how does HEVC compare with H.264/AVC? IEEE Consum. Electron. Mag. 1, 36–46 (2012)

    Article  Google Scholar 

  11. Sullivan, G.J., Ohm, J., Han, W., Wiegand, T.: Overview of the high efficiency video coding (HEVC) standard. IEEE Trans. Circuits Syst. Video Technol. 22, 1649–1668 (2012)

    Article  Google Scholar 

  12. Bayer, F.M., Cintra, R.J., Madanayake, A., Potluri, U.S.: Multiplierless approximate 4-point DCT VLSI architectures for transform block coding. Electron. Lett. 49, 1532–1534 (2013)

    Article  Google Scholar 

  13. Park, J., Nam, W., Han, S., Lee, S.: 2-D large inverse transform (\(16\times 16\), \(32\times 32\)) for HEVC (high efficiency video coding). J. Semicond. Technol. Sci. 2, 203–211 (2012)

    Article  Google Scholar 

  14. Park S., Meher, P.K.: Flexible integer DCT architectures for HEVC. In: IEEE International Symposium on Circuits and Systems (ISCAS), pp. 1376–1379 (2013)

  15. Potluri, U.S., Madanayake, A., Cintra, R.J., Bayer, F.M., Kulasekera, S., Edirisuriya, A.: Improved 8-point approximate DCT for image and video compression requiring only 14 additions. IEEE Trans. Circuits Syst. I: Regul. Papers 61(6), 1727–1740 (2014)

    Article  Google Scholar 

  16. Ohm, J., Sullivan, G.J., Schwarz, H., Tan, T.K., Wiegand, T.: Comparison of the coding efficiency of video coding standards—including high efficiency video coding (HEVC). IEEE Trans. Circuits Syst. Video Technol. 22, 1669–1684 (2012)

    Article  Google Scholar 

  17. Haweel, T.I.: A new square wave transform based on the DCT. Signal Process. 82, 2309–2319 (2001)

    Article  MATH  Google Scholar 

  18. Bouguezel, S., Ahmad, M.O., Swamy, M.N.S.: Low-complexity \(8\times 8\) transform for image compression. Electron. Lett. 44, 1249–1250 (2008)

    Article  Google Scholar 

  19. Bouguezel, S., Ahmad, M.O., Swamy, M.N.S.: A fast \(8\times 8\) transform for image compression. In: International Conference on Microelectronics (ICM), pp. 74–77, Dec (2009)

  20. Bouguezel, S., Ahmad, M.O., Swamy, M.N.S.: Binary discrete cosine and Hartley transforms. IEEE Trans. Circuits Syst. I: Regul. Papers 60, 989–1002 (2013)

    Article  MathSciNet  Google Scholar 

  21. Cintra, R.J., Bayer, F.M.: A DCT approximation for image compression. IEEE Signal Process. Lett. 18, 579–582 (2011)

    Article  Google Scholar 

  22. Bayer, F.M., Cintra, R.J.: DCT-like transform for image compression requires 14 additions only. Electron. Lett. 48, 919–921 (2012)

    Article  Google Scholar 

  23. Cintra, R.J., Bayer, F.M., Tablada, C.J.: Low-complexity 8-point DCT approximations based on integer functions. Signal Process. 99, 201–214 (2014)

    Article  Google Scholar 

  24. Tablada, C.J., Bayer, F.M., Cintra, R.J.: A class of DCT approximations based on the Feig–Winograd algorithm. Signal Process. 113, 38–51 (2015)

    Article  Google Scholar 

  25. Rao, K.R.: The Transform and Data Compression Handbook. CRC Press LLC, Boca Raton (2001)

    MATH  Google Scholar 

  26. Huang, Y., Wu, J., Chang, C.: A generalized output pruning algorithm for matrix–vector multiplication and its application to compute pruning discrete cosine transform. IEEE Trans. Signal Process. 48, 561–563 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  27. Markel, J.: FFT pruning. IEEE Trans. Audio Electroacoust. 19, 305–311 (1971)

    Article  Google Scholar 

  28. Skinner, D.P.: Pruning the decimation in-time FFT algorithm. IEEE Trans. Acoust. Speech Signal Process. 24, 193–194 (1976)

    Article  Google Scholar 

  29. Alves, R.G., Osorio P.L., Swamy, M.N.S.: General FFT pruning algorithm. In: 43rd IEEE Midwest Symposium on Circuits and Systems, vol. 3, pp. 1192–1195 (2000)

  30. Wang, L., Zhou, X., Sobelman, G.E., Liu, R.: Generic mixed-radix FFT pruning. IEEE Signal Process. Lett. 19, 167–170 (2012)

    Article  Google Scholar 

  31. Airoldi, R., Anjum, O., Garzia, F., Wyglinski, A.M.: Energy-efficient fast Fourier transforms for cognitive radio systems. IEEE Micro 30, 66–76 (2010)

    Article  Google Scholar 

  32. Whatmough, P.N., Perrett, M.R., Isam, S., Darwazeh, I.: VLSI architecture for a reconfigurable spectrally efficient FDM baseband transmitter. IEEE Trans. Circuits Syst. I: Regul. Papers 59, 1107–1118 (2012)

    Article  MathSciNet  Google Scholar 

  33. Oppenheim, A., Schafer, R.: Discrete-Time Signal Processing, 3rd edn. Pearson, Upper Saddle River (2010)

    MATH  Google Scholar 

  34. Kim, J.H., Kim, J.G., Ji, Y., Jung, Y., Won, C.: An islanding detection method for a grid-connected system based on the Goertzel algorithm. IEEE Trans. Power Electron. 26, 1049–1055 (2011)

    Article  Google Scholar 

  35. Carugati, I., Maestri, S., Donato, P.G., Carrica, D., Benedetti, M.: Variable sampling period filter PLL for distorted three-phase systems. IEEE Trans. Power Electron. 27, 321–330 (2012)

    Article  Google Scholar 

  36. Wang, Z.: Pruning the fast discrete cosine transform. IEEE Trans. Commun. 39, 640–643 (1991)

    Article  Google Scholar 

  37. Skodras, A.N.: Fast discrete cosine transform pruning. IEEE Trans. Signal Process. 42, 1833–1837 (1994)

    Article  Google Scholar 

  38. Lecuire, V., Makkaoui, L., Moureaux, J.-M.: Fast zonal DCT for energy conservation in wireless image sensor networks. Electron. Lett. 48, 125–127 (2012)

    Article  Google Scholar 

  39. Karakonstantis, G., Banerjee, N., Roy, K.: Process-variation resilient and voltage-scalable DCT architecture for robust low-power computing. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 18, 1461–1470 (2009)

    Article  Google Scholar 

  40. Kouadria, N., Doghmane, N., Messadeg, D., Harize, S.: Low complexity DCT for image compression in wireless visual sensor networks. Electron. Lett. 49, 1531–1532 (2013)

    Article  Google Scholar 

  41. Meher, P.K., Park, S.Y., Mohanty, B.K., Lim, K.S., Yeo, C.: Efficient integer DCT architectures for HEVC. IEEE Trans. Circuits Syst. Video Technol. 24, 168–178 (2014)

    Article  Google Scholar 

  42. Joint Collaborative Team on Video Coding (JCT-VC). HEVC reference software documentation. Technical report, Fraunhofer Heinrich Hertz Institute (2013)

  43. Britanak, V., Yip, P., Rao, K.R.: Discrete Cosine and Sine Transforms: General Properties, Fast Algorithms and Integer Approximation. Elsevier, Amsterdam (2007)

    Book  Google Scholar 

  44. Cintra, R.J.: An integer approximation method for discrete sinusoidal transforms. J. Circuits Syst. Signal Process. 30, 1481–1501 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  45. The USC-SIPI image database. University of Southern California, Signal and Image Processing Institute (2011). http://sipi.usc.edu/database/

  46. Blahut, R.E.: Fast Algorithms for Signal Processing. Cambridge University Press, Cambridge (2010)

    Book  MATH  Google Scholar 

  47. Makkaoui, L., Lecuire, V., Moureaux, J.: Fast zonal DCT-based image compression for wireless camera sensor networks. In: 2nd International Conference on Image Processing Theory Tools and Applications (IPTA), pp. 126–129 (2010)

  48. Seber, G.A.F.: A Matrix Handbook for Statisticians. Wiley, New York (2008)

    MATH  Google Scholar 

  49. Chen, W.H., Smith, C., Fralick, S.: A fast computational algorithm for the discrete cosine transform. IEEE Trans. Commun. 25(9), 1004–1009 (1977)

    Article  MATH  Google Scholar 

  50. Bhaskaran, V., Konstantinides, K.: Image and Video Compression Standards. Kluwer Academic Publishers, Boston (1997)

    Book  Google Scholar 

  51. Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: Image quality assessment: from error visibility to structural similarity. IEEE Trans. Image Process. 13, 600–612 (2004)

    Article  Google Scholar 

  52. Joint Collaborative Team on Video Coding (JCT-VC). HEVC references software documentation. Fraunhofer Heinrich Hertz Institute (2013). https://hevc.hhi.fraunhofer.de/

Download references

Acknowledgments

Authors acknowledge partial support from CNPq, FACEPE, FAPERGS, and The University of Akron.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Renato J. Cintra.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Coutinho, V.A., Cintra, R.J., Bayer, F.M. et al. A multiplierless pruned DCT-like transformation for image and video compression that requires ten additions only. J Real-Time Image Proc 12, 247–255 (2016). https://doi.org/10.1007/s11554-015-0492-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11554-015-0492-8

Keywords

Navigation