Skip to main content
Log in

Error range in proximal femoral osteotomy using computer tomography-based navigation

  • Original Article
  • Published:
International Journal of Computer Assisted Radiology and Surgery Aims and scope Submit manuscript

Abstract

Purpose 

The purpose of this preliminary study was to determine the error range compared with preoperative plans in proximal femoral osteotomy conducted using a computed tomography (CT)-based navigation system.

Methods 

Four patients (four hips) underwent transtrochanteric rotational osteotomy (TRO), and three patients (four hips) underwent curved varus osteotomy (CVO) using CT-based navigation. Volume registration of pre- and postoperative CT was performed for error assessment.

Results 

In TRO, the mean osteotomy angle error was \(1.1^{\circ }\) (range \(0^{\circ }{-}3.1^{\circ }\)) in the valgus direction and \(1.8^{\circ }\) (range \(0^{\circ }{-}4.3^{\circ }\)) in the retroversion direction. The mean osteotomy position error, with the femoral head side as positive, was −0.4 mm (range −1.4 to 0 mm). The bone fragment rotational movement error was \(2.5^{\circ }\) (range \(0^{\circ }{-}10^{\circ }\)). In CVO, the mean osteotomy position error, with the femoral head side as positive, was −0.2 mm (range −2.0 to 1.7 mm) at the level of the lesser trochanter and 0.8 mm (range 0–3.2 mm) at the level of the greater trochanter. Bone fragment varus accuracy was \(2.3^{\circ }\) (range \(0^{\circ }{-}5^{\circ }\)).

Conclusions 

In proximal femoral osteotomy using CT-based navigation, the angle error of osteotomy was within \(5^{\circ }\) and the positional error was within 4 mm. The rotational movement error of the proximal fragment was within \(10^{\circ }\). These margins of error should be considered in preoperative planning. To improve surgical accuracy, it would be necessary to develop a computer-assisted device which can track the osteotomized fragment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Sugioka Y (1978) Transtrochanteric anterior rotational osteotomy of the femoral head in the treatment of osteonecrosis affecting the hip: a new osteotomy operation. Clin Orthop Relat Res 130:191–201

    Google Scholar 

  2. Sakano S, Hasegawa Y, Torii Y, Kawasaki M, Ishiguro N (2004) Curved intertrochanteric varus osteotomy for osteonecrosis of the femoral head. J Bone Joint Surg Br 86(3):359–365

    Article  CAS  PubMed  Google Scholar 

  3. Sugano N, Takaoka K, Ohzono K, Matsui M, Saito M, Saito S (1992) Rotational osteotomy for non-traumatic avascular necrosis of the femoral head. J Bone Joint Surg Br 74(5):734–739

    Article  CAS  PubMed  Google Scholar 

  4. Miyanishi K, Noguchi Y, Yamamoto T, Irisa T, Suenaga E, Jingushi S, Sugioka Y, Iwamoto Y (2000) Prediction of the outcome of transtrochanteric rotational osteotomy for osteonecrosis of the femoral head. J Bone Joint Surg Br 82(4):512–516

    Article  CAS  PubMed  Google Scholar 

  5. Atsumi T, Kajiwara T, Hiranuma Y, Tamaoki S, Asakura Y (2006) Posterior rotational osteotomy for nontraumatic osteonecrosis with extensive collapsed lesions in young patients. J Bone Joint Surg Am 88(Suppl 3):42–47. doi:10.2106/jbjs.f.00767

    PubMed  Google Scholar 

  6. Zhao G, Yamamoto T, Ikemura S, Motomura G, Iwasaki K, Yamaguchi R, Nakashima Y, Mawatari T, Iwamoto Y (2012) Clinico-radiological factors affecting the joint space narrowing after transtrochanteric anterior rotational osteotomy for osteonecrosis of the femoral head. J Orthop Sci 17(4):390–396. doi:10.1007/s00776-012-0238-4

    Article  PubMed  Google Scholar 

  7. Zhao G, Yamamoto T, Ikemura S, Motomura G, Mawatari T, Nakashima Y, Iwamoto Y (2010) Radiological outcome analysis of transtrochanteric curved varus osteotomy for osteonecrosis of the femoral head at a mean follow-up of 12.4 years. J Bone Joint Surg Br 92(6):781–786. doi:10.1302/0301-620x.92b6.23621

    Article  CAS  PubMed  Google Scholar 

  8. Hamanishi M, Yasunaga Y, Yamasaki T, Mori R, Shoji T, Ochi M (2014) The clinical and radiographic results of intertrochanteric curved varus osteotomy for idiopathic osteonecrosis of the femoral head. Arch Orthop Trauma Surg 134(3):305–310. doi:10.1007/s00402-013-1919-y

    Article  PubMed  Google Scholar 

  9. Sonoda K, Yamamoto T, Motomura G, Nakashima Y, Yamaguchi R, Iwamoto Y (2015) Outcome of transtrochanteric rotational osteotomy for posttraumatic osteonecrosis of the femoral head with a mean follow-up of 12.3 years. Arch Orthop Trauma Surg 135(9):1257–1263. doi:10.1007/s00402-015-2282-y

    Article  PubMed  Google Scholar 

  10. Koyama T, Sugano N, Nishii T, Miki H, Takao M, Sato Y, Yoshikawa H, Tamura S (2009) MRI-based surgical simulation of transtrochanteric rotational osteotomy for femoral head osteonecrosis. J Orthop Res 27(4):447–451. doi:10.1002/jor.20568

    Article  PubMed  Google Scholar 

  11. Sugano N, Atsumi T, Ohzono K, Kubo T, Hotokebuchi T, Takaoka K (2002) The 2001 revised criteria for diagnosis, classification, and staging of idiopathic osteonecrosis of the femoral head. J Orthop Sci 7(5):601–605. doi:10.1007/s007760200108

    Article  PubMed  Google Scholar 

  12. Steinberg ME, Hayken GD, Steinberg DR (1995) A quantitative system for staging avascular necrosis. J Bone Joint Surg Br 77(1):34–41

    CAS  PubMed  Google Scholar 

  13. Kerboul M, Thomine J, Postel M, Merle d’Aubigne R (1974) The conservative surgical treatment of idiopathic aseptic necrosis of the femoral head. J Bone Joint Surg Br 56(2):291–296

    CAS  PubMed  Google Scholar 

  14. Ha YC, Jung WH, Kim JR, Seong NH, Kim SY, Koo KH (2006) Prediction of collapse in femoral head osteonecrosis: a modified Kerboul method with use of magnetic resonance images. J Bone Joint Surg Am 88(Suppl 3):35–40. doi:10.2106/jbjs.f.00535

    PubMed  Google Scholar 

  15. Xu K, Li YM, Zhang HF, Wang CG, Xu YQ, Li ZJ (2014) Computer navigation in total hip arthroplasty: a meta-analysis of randomized controlled trials. Int J surg (London, England) 12(5):528–533. doi:10.1016/j.ijsu.2014.02.014

    Article  Google Scholar 

  16. Langlotz F, Stucki M, Bachler R, Scheer C, Ganz R, Berlemann U, Nolte LP (1997) The first twelve cases of computer assisted periacetabular osteotomy. Comput Aided Surg 2(6):317–326. doi:10.1002/(sici)1097-0150(1997)2:6<;317::aid-igs1>;3.0.co;2-2

  17. Langlotz F, Bachler R, Berlemann U, Nolte LP, Ganz R (1998) Computer assistance for pelvic osteotomies. Clin Orthop Relat Res 354:92–102

    Article  Google Scholar 

  18. Nakahodo K, Sasama T, Sato Y, Sugano N, Ohzono K, Nishii T, Nishihara S, Yonenobu K, Ochi T, Tamura S (2000) Intraoperative update of 3D bone model during computer navigation of pelvic osteotomies using real-time 3D position data. In: Lemke H, Vannier M, Inamura K, Farman A, Doi K (eds) Computer assisted radiology and surgery. 14th international symposium and exhibition (CARS 2000), San Francisco, CA, 2000. Elsevier, Amsterdam, pp 252–256

    Google Scholar 

  19. Mayman DJ, Rudan J, Yach J, Ellis R (2002) The Kingston periacetabular osteotomy utilizing computer enhancement: a new technique. Comput Aided Surg 7(3):179–186. doi:10.1002/igs.10041

    Article  PubMed  Google Scholar 

  20. Sugano N, Takao M, Sakai T, Nishii T, Miki H (2016) Safety and accuracy of CT-based navigation for rotational acetabular osteotomy. Formos J Musculoskelet Disord 7(1):44–50. doi:10.6492/fjmd.20151007

    Google Scholar 

  21. Akiyama H, Goto K, So K, Nakamura T (2010) Computed tomography-based navigation for curved periacetabular osteotomy. J Orthop Sci 15(6):829–833. doi:10.1007/s00776-010-1520-y

    Article  PubMed  Google Scholar 

  22. Hsieh PH, Chang YH, Shih CH (2006) Image-guided periacetabular osteotomy: computer-assisted navigation compared with the conventional technique: a randomized study of 36 patients followed for 2 years. Acta Orthop 77(4):591–597. doi:10.1080/17453670610012656

    Article  PubMed  Google Scholar 

  23. Inaba Y, Kobayashi N, Ike H, Kubota S, Saito T (2016) Computer-assisted rotational acetabular osteotomy for patients with acetabular dysplasia. Clin Orthop Surg 8(1):99–105. doi:10.4055/cios.2016.8.1.99

    Article  PubMed  PubMed Central  Google Scholar 

  24. Takao M, Nishii T, Sakai T, Sugano N (2016) Comparison of rotational acetabular osteotomy performed with navigation by surgeons with different levels of experience of osteotomies. Int J Comput Assist Radiol Surg. doi:10.1007/s11548-016-1494-0

    Google Scholar 

  25. Kitada M, Nakamura N, Iwana D, Kakimoto A, Nishii T, Sugano N (2011) Evaluation of the accuracy of computed tomography-based navigation for femoral stem orientation and leg length discrepancy. J Arthroplast 26(5):674–679. doi:10.1016/j.arth.2010.08.001

    Article  Google Scholar 

  26. Kitada M, Sakai T, Murase T, Hanada T, Nakamura N, Sugano N (2013) Validation of the femoral component placement during hip resurfacing: a comparison between the conventional jig, patient-specific template, and CT-based navigation. Int J Med Robot Comput Assist Surg MRCAS 9(2):223–229. doi:10.1002/rcs.1490

    Article  Google Scholar 

  27. Bailey C, Gul R, Falworth M, Zadow S, Oakeshott R (2009) Component alignment in hip resurfacing using computer navigation. Clin Orthop Relat Res 467(4):917–922. doi:10.1007/s11999-008-0584-x

    Article  PubMed  Google Scholar 

  28. Olsen M, Schemitsch EH (2011) Avoiding short-term femoral neck fracture with imageless computer navigation for hip resurfacing. Clin Orthop Relat Res 469(6):1621–1626. doi:10.1007/s11999-010-1607-y

    Article  PubMed  Google Scholar 

  29. Schnurr C, Michael JW, Eysel P, Konig DP (2009) Imageless navigation of hip resurfacing arthroplasty increases the implant accuracy. Int Orthop 33(2):365–372. doi:10.1007/s00264-007-0494-7

    Article  CAS  PubMed  Google Scholar 

  30. Akiyama H, Kawanabe K, Goto K, Ohnishi E, Nakamura T (2007) Computer-assisted fluoroscopic navigation system for removal of distal femoral bone cement in revision total hip arthroplasty. J Arthroplast 22(3):445–448. doi:10.1016/j.arth.2006.11.010

    Article  Google Scholar 

  31. Hamelinck HK, Haagmans M, Snoeren MM, Biert J, van Vugt AB, Frolke JP (2007) Safety of computer-assisted surgery for cannulated hip screws. Clin Orthop Relat Res 455:241–245. doi:10.1097/01.blo.0000238815.40777.d2

    Article  CAS  PubMed  Google Scholar 

  32. Liebergall M, Ben-David D, Weil Y, Peyser A, Mosheiff R (2006) Computerized navigation for the internal fixation of femoral neck fractures. J Bone Joint Surg Am 88(8):1748–1754. doi:10.2106/jbjs.e.00137

    PubMed  Google Scholar 

  33. Wong KC, Kumta SM, Chiu KH, Antonio GE, Unwin P, Leung KS (2007) Precision tumour resection and reconstruction using image-guided computer navigation. J Bone Joint Surg Br 89(7):943–947. doi:10.1302/0301-620x.89b7.19067

    Article  CAS  PubMed  Google Scholar 

  34. Pflugi S, Liu L, Ecker TM, Schumann S, Larissa Cullmann J, Siebenrock K, Zheng G (2015) A cost-effective surgical navigation solution for periacetabular osteotomy (PAO) surgery. Int J Comput Assist Radiol Surg. doi:10.1007/s11548-015-1267-1

    PubMed  Google Scholar 

  35. Murphy RJ, Armiger RS, Lepisto J, Mears SC, Taylor RH, Armand M (2015) Development of a biomechanical guidance system for periacetabular osteotomy. Int J Comput Assist Radiol Surg 10(4):497–508. doi:10.1007/s11548-014-1116-7

    Article  PubMed  Google Scholar 

  36. Otsuki B, Takemoto M, Kawanabe K, Awa Y, Akiyama H, Fujibayashi S, Nakamura T, Matsuda S (2013) Developing a novel custom cutting guide for curved peri-acetabular osteotomy. Int Orthop 37(6):1033–1038. doi:10.1007/s00264-013-1873-x

  37. Radermacher K, Portheine F, Anton M, Zimolong A, Kaspers G, Rau G, Staudte HW (1998) Computer assisted orthopaedic surgery with image based individual templates. Clin Orthop Relat Res 354:28–38

    Article  Google Scholar 

  38. Ma B, Kunz M, Gammon B, Ellis RE, Pichora DR (2014) A laboratory comparison of computer navigation and individualized guides for distal radius osteotomy. Int J Comput Assist Radiol Surg 9(4):713–724. doi:10.1007/s11548-013-0966-8

    Article  PubMed  Google Scholar 

  39. Murase T, Oka K, Moritomo H, Goto A, Yoshikawa H, Sugamoto K (2008) Three-dimensional corrective osteotomy of malunited fractures of the upper extremity with use of a computer simulation system. J Bone Joint Surg Am 90(11):2375–2389. doi:10.2106/jbjs.g.01299

    Article  PubMed  Google Scholar 

  40. Wong KC, Sze KY, Wong IO, Wong CM, Kumta SM (2016) Patient-specific instrument can achieve same accuracy with less resection time than navigation assistance in periacetabular pelvic tumor surgery: a cadaveric study. Int J Comput Assist Radiol Surg 11(2):307–316. doi:10.1007/s11548-015-1250-x

    Article  PubMed  Google Scholar 

  41. Chen WP, Tai CL, Tan CF, Shih CH, Hou SH, Lee MS (2005) The degrees to which transtrochanteric rotational osteotomy moves the region of osteonecrotic femoral head out of the weight-bearing area as evaluated by computer simulation. Clin Biomech (Bristol, Avon) 20(1):63–69. doi:10.1016/j.clinbiomech.2004.08.001

    Article  CAS  Google Scholar 

  42. Sakai T, Sugano N, Nishii T, Haraguchi K, Ochi T, Ohzono K (2000) MR findings of necrotic lesions and the extralesional area of osteonecrosis of the femoral head. Skelet Radiol 29(3):133–141

    Article  CAS  Google Scholar 

  43. Ikemura S, Yamamoto T, Jingushi S, Nakashima Y, Mawatari T, Iwamoto Y (2007) Leg-length discrepancy after transtrochanteric curved varus osteotomy for osteonecrosis of the femoral head. J Bone Joint Surg Br 89(6):725–729. doi:10.1302/0301-620x.89b6.18499

    Article  CAS  PubMed  Google Scholar 

  44. Chen WP, Tai CL, Shih CH, Hsieh PH, Leou MC, Lee MS (2004) Selection of fixation devices in proximal femur rotational osteotomy: clinical complications and finite element analysis. Clin Biomech (Bristol, Avon) 19(3):255–262. doi:10.1016/j.clinbiomech.2003.12.003

    Article  Google Scholar 

Download references

Acknowledgements

This study was supported in part by the Japanese Health Labor Sciences Research Grant provided by Ministry of Health, Labour and Welfare (JP) and by the Practical Research Project for Rare/Intractable Diseases from the Japan Agency for Medical Research and Development (AMED).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masaki Takao.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional research committee and with the 1964 Helsinki Declaration and its later amendments or comparable ethical standards.

Informed consent

For this type of study formal consent is not required.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Takao, M., Sakai, T., Hamada, H. et al. Error range in proximal femoral osteotomy using computer tomography-based navigation. Int J CARS 12, 2087–2096 (2017). https://doi.org/10.1007/s11548-017-1577-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11548-017-1577-6

Keywords

Navigation