Skip to main content
Log in

A Survey of auditory display in image-guided interventions

  • Review Article
  • Published:
International Journal of Computer Assisted Radiology and Surgery Aims and scope Submit manuscript

Abstract

Purpose

This article investigates the current state of the art of the use of auditory display in image-guided medical interventions. Auditory display is a means of conveying information using sound, and we review the use of this approach to support navigated interventions. We discuss the benefits and drawbacks of published systems and outline directions for future investigation.

Methods

We undertook a review of scientific articles on the topic of auditory rendering in image-guided intervention. This includes methods for avoidance of risk structures and instrument placement and manipulation. The review did not include auditory display for status monitoring, for instance in anesthesia.

Results

We identified 15 publications in the course of the search. Most of the literature (60%) investigates the use of auditory display to convey distance of a tracked instrument to an object using proximity or safety margins. The remainder discuss continuous guidance for navigated instrument placement. Four of the articles present clinical evaluations, 11 present laboratory evaluations, and 3 present informal evaluation (2 present both laboratory and clinical evaluations).

Conclusion

Auditory display is a growing field that has been largely neglected in research in image-guided intervention. Despite benefits of auditory displays reported in both the reviewed literature and non-medical fields, adoption in medicine has been slow. Future challenges include increasing interdisciplinary cooperation with auditory display investigators to develop more meaningful auditory display designs and comprehensive evaluations which target the benefits and drawbacks of auditory display in image guidance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

Notes

  1. Passages from Strauss et al. [14] translated from the original German into English by author DB.

  2. Musical Instrument Digital Interface, a protocol for electronic musical instrument communication.

References

  1. Cleary K, Peters T (2010) Image-guided interventions: technology review and clinical applications. Annu Rev Biomed Eng 12:1–433

  2. Mewes A, Hensen B, Wacker F, Hansen C (2017) Touchless interaction with software in interventional radiology and surgery: a systematic literature review. Int J Comput Assist Radiol Surg 12(2):291–305. doi:10.1007/s11548-016-1480-6

  3. Hansen C, Black D, Lange C, Rieber F, Lamade W, Donati M, Oldhafer K, Hahn H (2013) Auditory support for resection guidance in navigated liver surgery. Med Robotics Comput Assistg Surg 9(1):36

    Article  Google Scholar 

  4. Willems P, Noordmans H, van Overbeeke J, Viergever M, Tulleken C, van der Sprenkel J (2005) The impact of auditory feedback on neuronavigation. Acta Neurochir 147:167–173

    Article  CAS  PubMed  Google Scholar 

  5. Bork F, Fuerst B, Schneider A, Pinto F, Graumann C, Navab N (2015) Auditory and visio-temporal distance coding for 3-dimensional perception in medical augmented reality. In: Proceedings of 2015 IEEE international symposium on mixed and augmented reality (ISMAR), pp 7–12

  6. Kramer G, Walker B, Bonebright T, Cook P, Flowers J, Miner N, Neuhoff J, Bargar R, Barrass S, BErger J, Evreinov G, Fitch W, Grhn M, Handel S, Kaper H, Levkowitz H, Lodha S, Shinn-Cunningham B, Simoni M, Tipei S (1999) The sonification report: status of the field and research agenda. Report prepared for the national science foundation by members of the international community for auditory display

  7. Sanderson P, Watson M, Russell W (2005) Advanced patient monitoring displays: tools for continuous informing. Anesth Analg 101:161168

    Article  Google Scholar 

  8. Black D, Al Issawi J, Hansen C, Rieder C, Hahn HK (2013) Auditory support for navigated radiofrequency ablation. In: Proceedings of CURAC-Deutsche Gesellschaft fr Computer-und Roboterassistierte Chirurgie, p 3033

  9. Black D, Hettig J, Luz M, Hansen C, Kikinis R, Hahn H (2017) Auditory feedback to support image-guided medical needle placement. Int J CARS. doi:10.1007/s11548-017-1537-1

    Google Scholar 

  10. Cho B, Oka M, Matsumoto N, Ouchida R, Hong J, Hashizume M (2013) Warning navigation system using realtime safe region monitoring for otologic surgery. Int J Comput Assist Radiol Surg 8:395–405

    Article  PubMed  Google Scholar 

  11. Cho B, Matsumoto N, Komune s, Hashizume M (2014) A surgical navigation system for guiding exact cochleostomy using auditory feedback: a clinical feasibility study. BioMed Res Int 2014:769659

    Article  PubMed  PubMed Central  Google Scholar 

  12. Dixon B, Daly M, Chan H, Vescan A, Witterick I, Irish J (2014) Augmented real-time navigation with critical structure proximity alerts for endoscopic skull base surgery. Laryngoscope 124:853–859

    Article  PubMed  Google Scholar 

  13. Kitagawa M, Dokko D, Okamura A, Yuh D (2005) Effect of sensory substitution on suture-manipulation forces for robotic surgical systems. Thorac Cardiovasc Surg 129(1):151–158

    Article  Google Scholar 

  14. Strauß G, Schaller S, Zaminer B, Heininger S, Hofer M, Manzey D, Meixensberger J, Dietz S, Luth T (2010) Klinische Erfahrungen mit einem Kollisionswarnsystem. HNO 59:470479

    Google Scholar 

  15. Voormolen E, Woerdeman P, van Stralen M, Noordmans H, Viergever M, Regli L, van der Sprenkel J (2012) Validation of exposure visualization and audible distance emission for navigated temporal bone drilling in phantoms. PLoS ONE 7:e41262

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Wegner K, Karron DB (1997) Surgical navigation using audio feedback. In: Morgan K, Hoffman H, Stredney D, Weghorst S (eds) Medicine meets virtual reality. IOS Press, Amsterdam, pp 450–458

    Google Scholar 

  17. Wegner K (1998) Surgical navigation system and method using audio feedback. In: 5th international conference on auditory display

  18. Woerdeman P, Willems P, Noordmans H, van der Sprenkel J (2009) Auditory feedback during frameless image-guided surgery in a phantom model and initial clinical experience. Neurosurgery 110:257–262

    Article  Google Scholar 

  19. Luz M, Manzey D, Modemann S, Strauss G (2014) Less is sometimes more: a comparison of distance-control and navigated-control concepts of image-guided navigation support for surgeons. Ergonomics 2015 58(3):383–393

    Google Scholar 

  20. Walker B, Nees M (2011) Theory of sonification. In: Hermann T, Hunt A, Neuhoff J (eds) Handbook of sonification. Academic Press, New York, pp 9–31

    Google Scholar 

  21. Hedge, A (2013) Auditory Displays. http://ergo.human.cornell.edu/studentdownloads/DEA3250pdfs/idauditory. Accessed 15 Dec 2016

  22. Speeth S (1961) Seismometer sounds. J Acoust Soc Am 33:909916

    Google Scholar 

  23. Parseihian G, Ystad S, Aramaki M, Martinet R (2015) The process of sonification design for guidance tasks. J Mob Media 9(2). http://wi.mobilities.ca/gaetan-parseihian-the-process-of-sonification-design-for-guidance-tasks/

  24. Brock D, Stroup J, Ballas J (2002) Using an auditory display to manage attention in a dual task, multiscreen environment. In: Proceedings of 8th international conference on auditory display, pp 177–180

  25. Saue S (2000) A model for interaction in exploratory sonification displays. In: 6th international conference on auditory display, pp 105–110

  26. Buxton B, Gaver W, Bly S (1994) The use of non-speech audio at the interface. http://www.billbuxton.com/Audio.TOC.html. Accessed 15 Dec 2016

  27. Furmanski C, Azuma R, Daily M (2002) Augmented-reality visualizations guided by cognition: perceptual heuristics for combining visible and obscured information. In: Proceedings of the international symposium on mixed and augmented reality, p 215

  28. Lewis C (1982) Using the “thinking aloud” method in cognitive interface design. IBM Research Report RC-9265

  29. Hart S (2006) NASA-task load index (NASA-TLX); 20 years later. In: Human factors and ergonomics society 50th annual meeting, pp 904–908

  30. Miller R, Eriksson L, Fleisher L, Wiener-Kronish J, Cohen N, Young W (2015) Anesthesia. Elsevier, Amsterdam

    Google Scholar 

  31. Allen K, Blascovich J (1994) Effects of music on cardiovascular reactivity among surgeons. J Am Med Assoc 272(11):882–884

    Article  CAS  Google Scholar 

  32. George S, Ahmed S, Mammen K, John G (2011) Influence of music on operation theatre staff. Anaesthesiol Clin Pharmacol 27(3):354–357

    Article  Google Scholar 

  33. Moorthy K, Munz Y, Undre S, Darzi A (2004) Objective evaluation of the effect of noise on the performance of a complex laparoscopic task. Surgery 136(1):25–30 (discussion 31)

  34. Edworthy J, Loxley S, Dennis I (1991) Improving auditory warning design: relationship between warning sound parameters and perceived urgency. Hum Factors 33(2):205–231

    Article  CAS  PubMed  Google Scholar 

  35. Mondor T, Finley G (2003) The perceived urgency of auditory warning alarms used in the hospital operating room is inappropriate. Can J Anesth 50(3):221–228

    Article  PubMed  Google Scholar 

  36. Haerle S, Daly M, Chan H, Vescan A, Witterick I, Gentili F, Zadeh G, Kucharczyk W, Irish J (2015) Localized intraoperative virtual endoscopy (LIVE) for surgical guidance in 16 skull base patients. Otolaryngol Head Neck Surg 152:165–171

  37. Parseihian G, Gondre C, Aramaki M, Ystad S, Kronland-Martinet R (2016) Comparison and evaluation of sonification strategies for guidance tasks. IEEE Trans Multimed 18(4):674–686

  38. Arnolli MM, Hanumara NC, Franken M, Brouwer DM, Broeders IA (2015) An overview of systems for CT and MRI guided percutaneous needle placement in the thorax and abdomen. Med Robotics Comput Assist Surg 11(4):458–475

    Article  Google Scholar 

  39. Banz V, Mller PC, Tinguely P, Inderbitzin D, Ribes D, Peterhans M, Candinas D, Weber S (2016) Intraoperative image-guided navigation system: development and applicability in 65 patients undergoing liver surgery. Langenbeck’s Arch Surg 401(4):495–502

    Article  Google Scholar 

  40. Burgner J, Rucker D, Gilbert H, Swaney P, Russell P, Weaver K, Webster R (2013) A telerobotic system for transnasal surgery. IEEE ASME Trans Mechatron 19(3):996–1006

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The work of this paper is partly funded by the German Research Foundation (DFG) grants HA 7819/1-1, the Federal  Ministry of Education and Research within the Forschungscampus STIMULATE grant 13GW0095A, and National Institutes of Health grants P41 EB015902, P41 EB015898, R01EB014955, and U24CA180918.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Black.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

For this type of study, formal consent is not required. This article does not contain any studies with human participants or animals performed by any of the authors.

Informed consent

This articles does not contain patient data.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Black, D., Hansen, C., Nabavi, A. et al. A Survey of auditory display in image-guided interventions. Int J CARS 12, 1665–1676 (2017). https://doi.org/10.1007/s11548-017-1547-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11548-017-1547-z

Keywords

Navigation