Skip to main content

Advertisement

Log in

Hyperspectral interventional imaging for enhanced tissue visualization and discrimination combining band selection methods

  • Review Article
  • Published:
International Journal of Computer Assisted Radiology and Surgery Aims and scope Submit manuscript

Abstract

Purpose

Hyperspectral imaging is an emerging technology recently introduced in medical applications inasmuch as it provides a powerful tool for noninvasive tissue characterization. In this context, a new system was designed to be easily integrated in the operating room in order to detect anatomical tissues hardly noticed by the surgeon’s naked eye.

Method

Our LCTF-based spectral imaging system is operative over visible, near- and middle-infrared spectral ranges (400–1700 nm). It is dedicated to enhance critical biological tissues such as the ureter and the facial nerve. We aim to find the best three relevant bands to create a RGB image to display during the intervention with maximal contrast between the target tissue and its surroundings. A comparative study is carried out between band selection methods and band transformation methods. Combined band selection methods are proposed. All methods are compared using different evaluation criteria.

Results

Experimental results show that the proposed combined band selection methods provide the best performance with rich information, high tissue separability and short computational time. These methods yield a significant discrimination between biological tissues.

Conclusion

We developed a hyperspectral imaging system in order to enhance some biological tissue visualization. The proposed methods provided an acceptable trade-off between the evaluation criteria especially in SWIR spectral band that outperforms the naked eye’s capacities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Lu G, Fei B (2014) Medical hyperspectral imaging: a review. J Biomed Opt 19:10901

    Article  CAS  PubMed  Google Scholar 

  2. Calin MA, Parasca SV, Savastru D, Manea D (2014) Hyperspectral imaging in the medical field: present and future. Appl Spectrosc Rev 49:435–447

    Article  Google Scholar 

  3. Akbari H, Uto K, Kosugi Y, Kojima K, Tanaka N (2011) Cancer detection using infrared hyperspectral imaging. Cancer Sci 102:852–857

    Article  CAS  PubMed  Google Scholar 

  4. Usenik P, Bürmen M, Vrtovec T, Fidler A, Pernuš F, Likar B (2011) Automated classification and visualization of healthy and pathological dental tissues based on near-infrared hyper-spectral imaging. In: Proceedings of the SPIE, medical imaging, pp 796340–796340–8

  5. Zuzak KJ, Francis RP, Wehner EF, Smith J, Litorja M, Allen DW, Tracy C, Cadeddu J, Livingston E (2009) DLP hyperspectral imaging for surgical and clinical utility. Proceedings of the SPIE, pp 721006–721009

  6. Bonnier F, Bertrand D, Rubin S, Ventéo L, Pluot M, Baehrel B, Manfait M, Sockalingum GD (2008) Detection of pathological aortic tissues by infrared multispectral imaging and chemometrics. Analyst 133:784–790

    Article  CAS  PubMed  Google Scholar 

  7. Monteiro ST, Uto K, Kosugi Y, Kobayashi N, Watanabe E (2006) Optimization of infrared spectral manipulation for surgical visual aid. J Jpn Soc Comput Aided Surg 8:33–38

    Article  Google Scholar 

  8. Cao Q, Zhegalova NG, Wang ST, Akers WJ, Berezin MY (2013) Multispectral imaging in the extended near-infrared window based on endogenous chromophores. J Biomed Opt 18:101318

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Sahu A, Saleheen F, Oleksyuk V, Chen Y, Won C-H (2013) Tactile and hyperspectral imaging sensors for mammary tumor characterization. Sensors (Basel, Switzerland), 2013 IEEE. pp 1–4

  10. Wang W, Li C, Tollner EW, Rains GC, Gitaitis RD (2012) A liquid crystal tunable filter based shortwave infrared spectral imaging system: design and integration. Comput Electron Agric 80:126–134

    Article  Google Scholar 

  11. Medina JM, Pereira LM, Correia HT, Nascimento SMC (2011) Hyperspectral optical imaging of human iris in vivo: characteristics of reflectance spectra. J Biomed Opt 16:076001

    Article  PubMed  Google Scholar 

  12. Clancy NT, Stoyanov D, James DRC, Di Marco A, Sauvage V, Clark J, Yang G-Z, Elson DS (2012) Multispectral image alignment using a three channel endoscope in vivo during minimally invasive surgery. Biomed Opt Express 3:2567

    Article  PubMed  PubMed Central  Google Scholar 

  13. Li Q, Xu D, He X, Wang Y, Chen Z, Liu H, Xu Q, Guo F (2013) AOTF based molecular hyperspectral imaging system and its applications on nerve morphometry. Appl Opt 52:3891–3901

    Article  PubMed  Google Scholar 

  14. Liu Z, Wang H, Li Q (2011) Tongue tumor detection in medical hyperspectral images. Sensors 12:162–174

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Randeberg LL, Hernandez-Palacios J (2012) Hyperspectral imaging of bruises in the SWIR spectral region. In: Proceedings of the SPIE, pp 82070N–82070N–10

  16. Bambery KR, Wood BR, Quinn MA, McNaughton D (2004) Fourier transform infrared imaging and unsupervised hierarchical clustering applied to cervical biopsies. Aust J Chem 57:1139

  17. Verdonck M, Wald N, Janssis J, Yan P, Meyer C, Legat A, Speiser DE, Desmedt C, Larsimont D, Sotiriou C, Goormaghtigh E (2013) Breast cancer and melanoma cell line identification by FTIR imaging after formalin-fixation and paraffin-embedding. Analyst 138:4083–4091

    Article  CAS  PubMed  Google Scholar 

  18. Wehner E, Thapa A, Livingston E, Zuzak K (2011) NIR DLP\(\textregistered \) hyperspectral imaging system for medical applications. In: Proceedings of the SPIE, pp 793204–793209

  19. Tack N, Lambrechts A, Soussan P, Haspeslagh L (2012) A compact, high-speed, and low-cost hyperspectral imager. Proceedings of the SPIE, pp 82660Q–82660Q–13

  20. Khelifi R, Adel M, Bourennane S (2012) Multispectral texture characterization: application to computer aided diagnosis on prostatic tissue images. EURASIP J Adv Signal Process 2012:118

    Article  Google Scholar 

  21. Irshad H, Gouaillard A, Roux L, Racoceanu D (2014) Multispectral band selection and spatial characterization: application to mitosis detection in breast cancer histopathology. Comput Med Imag Gr 38:390–402

    Article  CAS  Google Scholar 

  22. Happillon T, Sebiskveradze D, Vrabie V, Piot O, Jeannesson P, Manfait M, Gobinet C (2012) FCM parameter estimation methods: Application to infrared spectral histology of human skin cancers. In: Proceedings of the 20th European on signal processing conference (EUSIPCO), 2012 , pp 1831–1835

  23. Yamamoto S, Tsumura N, Nakaguchi T, Namiki T, Kasahara Y, Terasawa K, Miyake Y (2011) Regional image analysis of the tongue color spectrum. Int J Comput Assist Radiol Surg 6:143–152

    Article  PubMed  Google Scholar 

  24. Frykman PK, Lindsley EH, Gaon M, Farkas DL (2008) Spectral imaging for precise surgical intervention in Hirschsprung’s Disease. J Biophoton 1:97–103

    Article  Google Scholar 

  25. Pourreza-Shahri R, Saki F, Kehtarnavaz N, LeBoulluec P, Liu H (2013) Classification of ex-vivo breast cancer positive margins measured by hyperspectral imaging. In: 20th IEEE international conference on image processing (ICIP), 2013 pp 1408–1412

  26. Zuzak KJ, Naik SC, Alexandrakis G, Hawkins D, Behbehani K, Livingston E (2008) Intraoperative bile duct visualization using near-infrared hyperspectral video imaging. Am J Surg 195:491–497

    Article  PubMed  Google Scholar 

  27. Mitra K, Melvin J, Chang S, Park K, Yilmaz A, Melvin S, Xu RX (2012) Indocyanine-green-loaded microballoons for biliary imaging in cholecystectomy. J Biomed Opt 17:116025

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Jacques SL (2013) Optical properties of biological tissues: a review. Phys Med Biol 58:R37

    Article  PubMed  Google Scholar 

  29. Wang B, Wang X, Chen Z (2012) Spatial entropy based mutual information in hyperspectral band selection for supervised classification. Int J Numer Anal Model 9:181

    Google Scholar 

  30. Bisht V, Rawat U, Rani K, Chauhan P (2013) Urological injuries in obstetrics and gynaecology. J Evol Med Dent Sci 2:8801–8805

    Article  Google Scholar 

  31. Abboudi H, Ahmed K, Royle J, Khan MS, Dasgupta P, N’Dow J (2013) Ureteric injury: a challenging condition to diagnose and manage. Nat Rev Urol 10:108–115

    Article  PubMed  Google Scholar 

  32. AAGL Practice Report (2012) Practice guidelines for intraoperative cystoscopy in laparoscopic hysterectomy. J Minim. Invasive Gynecol 19:407–411

  33. Siemionow M (2010) Plastic and reconstructive surgery. Springer-Verlag, London

    Book  Google Scholar 

  34. Nouri D, Lucas Y, Treuillet S (2013) Calibration and test of a hyperspectral imaging prototype for intra-operative surgical assistance. In: Proceedings of the SPIE, Medical imaging: digital pathology, pp 86760P–9

  35. Rohde GK, Aldroubi A, Dawant BM (2003) The adaptive bases algorithm for intensity based nonrigid image registration. IEEE Trans Med Imaging 22:1470–1479

    Article  PubMed  Google Scholar 

  36. Burgers K, Fessehatsion Y, Rahmani S, Seo J, Wittman T (2009) A comparative analysis of dimension reduction algorithms on hyperspectral data. LAMDA Res Gr 1–23

  37. Van Der Maaten LJP, Postma EO, Van Den Herik HJ (2009) Dimensionality reduction: a comparative review. J Mach Learn Res 10:1–41

    Google Scholar 

  38. Nouri D, Lucas Y, Treuillet S (2014) Efficient tissue discrimination during surgical interventions using hyperspectral imaging. In: International conference on information processing in computer assisted interventions (IPCAI), Fukuoka, Japan

  39. Nouri D, Lucas Y, Treuillet S (2014) Infrared hyperspectral imaging for enhanced tissue visualization and discrimination during surgical operation. In: IEEE international conference on image processing (ICIP), Paris

  40. Tsagaris V, Anastassopoulos V, Lampropoulos GA (2005) Fusion of hyperspectral data using segmented PCT for color representation and classification. IEEE Trans Geosci Remote Sens 43:2365–2375

    Article  Google Scholar 

  41. Tsai F, Lin E-K, Yoshino K (2007) Spectrally segmented principal component analysis of hyperspectral imagery for mapping invasive plant species. Int J Remote Sens 28:1023–1039

    Article  Google Scholar 

  42. Miao X, Gong P, Swope S, Pu RL, Carruthers R, Anderson GL (2007) Detection of yellow starthistle through band selection and feature extraction from hyperspectral imagery. Photogramm Eng Remote Sens 73:1005–1015

    Google Scholar 

  43. Beauchemin M, Fung KB (2001) On statistical band selection for image visualization. Photogramm Eng Remote Sens 67:571–574

    Google Scholar 

  44. Qaid AM, Basavarajappa H (2008) Application of optimum index factor technique to landsat-7 data for geological mapping of north east of Hajjah. Yemen Am J Sci Res 3:84–91

    Google Scholar 

  45. Chang CI, Wang S (2006) Constrained band selection for hyperspectral imagery. IEEE Trans Geosci Remote Sens 44:1575–1585

    Article  Google Scholar 

  46. Zuiderveld K (1994) Contrast limited adaptive histograph equalization. In: Heckbert PS (ed) Graphics gems IV. Academic Press Professional Inc., San Diego, pp 474–485

    Chapter  Google Scholar 

  47. Mori M, Chiba T, Nakamizo A, Kumashiro R, Murata M, Akahoshi T, Tomikawa M, Kikkawa Y, Yoshimoto K, Mizoguchi M (2014) others: Intraoperative visualization of cerebral oxygenation using hyperspectral image data: a two-dimensional mapping method. Int J Comput Assist Radiol Surg 9:1059–1072

    Article  PubMed  Google Scholar 

  48. Kubota A, Yang L, Wang J, Ando T, Yamashita H, Sakuma I, Chiba T, Kobayashi E (2014) Contrast enhancement between vasculature and placenta using narrow band images for TTTS surgery. Int J CARS 9(Suppl 1):S93–S101

    Google Scholar 

  49. Stelzle F, Adler W, Zam A, Tangermann-Gerk K, Knipfer C, Douplik A, Schmidt M, Nkenke E (2012) In vivo optical tissue differentiation by diffuse reflectance spectroscopy preliminary results for tissue-specific laser surgery. Surg Innov 19:385–393

    Article  PubMed  Google Scholar 

  50. Schols RM, ter Laan M, Stassen LPS, Bouvy ND, Amelink A, Wieringa FP, Alic L (2014) Differentiation between nerve and adipose tissue using wide-band (350–1,830 nm) in vivo diffuse reflectance spectroscopy. Lasers Surg Med 46:538–545

    Article  PubMed  Google Scholar 

  51. Schols RM, Alic L, Beets GL, Breukink SO, Wieringa FP, Stassen LPS (2015) Automated spectroscopic tissue classification in colorectal surgery. Surg Innov 22(6):557–567

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dorra Nouri.

Ethics declarations

Conflict of interest

Dorra Nouri, Yves Lucas and Sylvie Treuillet declare that they have no conflict of interest.

Ethical approval

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nouri, D., Lucas, Y. & Treuillet, S. Hyperspectral interventional imaging for enhanced tissue visualization and discrimination combining band selection methods. Int J CARS 11, 2185–2197 (2016). https://doi.org/10.1007/s11548-016-1449-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11548-016-1449-5

Keywords

Navigation