Skip to main content

Advertisement

Log in

Coupling strategies for multi-resolution deformable meshes: expanding the pyramid approach beyond its one-way nature

  • Original Article
  • Published:
International Journal of Computer Assisted Radiology and Surgery Aims and scope Submit manuscript

Abstract

Purpose

With higher resolutions, medical image processing operations like segmentation take more time to calculate per step. The pyramid technique is a common approach to solving this problem. Starting with a low resolution, a stepwise refinement is applied until the original resolution is reached.

Methods

Our work proposes a method for deformable model segmentation that generally utilizes the common pyramid technique with our improvement, to calculate and keep synchronized all mesh resolution levels in parallel. The models are coupled to propagate their changes. It presents coupling techniques and shows approaches for synchronization. The interaction with the models is realized using springs and volcanoes, and it is evaluated for the semantics of the operation to share them across the different levels.

Results

The locking overhead has been evaluated for different synchronization techniques with meshes of individual resolutions. The partial update strategy has been found to have the least locking overhead.

Conclusion

Running multiple models with individual resolutions in parallel is feasible. The synchronization approach has to be chosen carefully, so that an interactive modification of the segmentation remains possible. The proposed technique is aimed at making medical image segmentation more usable while delivering high performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Notes

  1. http://bulletphysics.org/.

  2. https://www.khronos.org/opencl/.

References

  1. Adelson E, Anderson C (1984) Pyramid methods in image processing. RCA Eng 29(6):33–41

    Google Scholar 

  2. Avila LS, Barré S, Blue R, Cole D, Geveci B, Hoffman WA, King B, Law CC, Martin KM, Schroeder WJ, Squillacote AH (2001) The VTK user’s guide. Kitware Inc, New York

    Google Scholar 

  3. Becker M, Magnenat-Thalmann N (2014) Deformable models in medical image segmentation. In: Magnenat-Thalmann N, Ratib O, Choi HF (eds) 3D multiscale physiological human, chap. 4, 1st edn. Springer, London, pp 81–106. doi:10.1007/978-1-4471-6275-9_4

  4. Becker M, Magnenat-Thalmann N (2014) Muscle tissue labeling of human lower extremities in multi-channel mDixon MR imaging: concepts and applications. In: Bioinformatics and biomedicine (BIBM), 2014 IEEE international conference on, pp 279–284. doi:10.1109/BIBM.2014.6999168

  5. Bogovic JA, Prince JL, Bazin PL (2013) A multiple object geometric deformable model for image segmentation. Comput Vis Image Underst 117(2):145–157. doi:10.1016/j.cviu.2012.10.006

    Article  PubMed  PubMed Central  Google Scholar 

  6. Botsch M, Steinberg S, Bischoff S, Kobbelt L (2002) OpenMesh–a generic and efficient polygon mesh data structure. In: OpenSG symposium, Citeseer

  7. Bredno J, Lehmann TMT, Spitzer K (2003) A general discrete contour model in two, three, and four dimensions for topology-adaptive multichannel segmentation. IEEE Trans Pattern Anal Mach Intell 25(5):550–563

    Article  Google Scholar 

  8. Buades A, Coll B, Morel J (2005) A non-local algorithm for image denoising. In: Computer vision and pattern recognition. CVPR 2005. IEEE computer society conference on, vol 2, pp 60–65. doi:10.1109/CVPR.2005.38

  9. Changizi N, Hamarneh G (2010) Probabilistic multi-shape representation using an isometric log-ratio mapping. In: Medical image computing and computer-assisted intervention: MICCAI \(\ldots \) International conference on medical image computing and computer-assisted intervention, vol 13, Pt 3, pp 563–570

  10. Cohen LDL (1991) On active contour models and balloons. CVGIP Image Underst 53(2):211–218

    Article  Google Scholar 

  11. Delingette H (1999) General object reconstruction based on simplex meshes. Int J Comput Vision 32(2):111–146. doi:10.1023/A:1008157432188

    Article  Google Scholar 

  12. Dufour A, Thibeaux R, Labruyère E, Guillén N, Olivo-Marin JC (2011) 3-D active meshes: fast discrete deformable models for cell tracking in 3-D time-lapse microscopy. IEEE Trans Image Process 20(7):1925–1937. doi:10.1109/TIP.2010.2099125

    Article  PubMed  Google Scholar 

  13. Edwards HC, Williams AB, Sjaardema GD, Baur DG, Cochran WK (2010) SIERRA toolkit computational mesh conceptual model. Tech. Rep, March, Sandia National Laboratories

  14. Han S, Nijdam NA, Schmid J, Kim J, Magnenat-Thalmann N (2010) Collaborative telemedicine for interactive multiuser segmentation of volumetric medical images. Vis Comput 26(6–8):639–648. doi:10.1007/s00371-010-0445-y

    Article  Google Scholar 

  15. Henriques A, Wünsche B (2008) Improved meshless deformation techniques for plausible interactive soft object simulations. In: Computer vision and computer graphics. Theory and applications

  16. Ierusalimschy R, de Figueiredo LH, Filho WC, de Figueiredo LH (1996) Lua–an extensible extension language. Softw Pract Exp 26(6):635–652

    Article  Google Scholar 

  17. Juan DG, Trombella S, Delattre BM, Seimbille Y, Ratib O (2014) Study of skeletal muscle behavior by PET/MRI. In: IEEE-EMBS international conference on biomedical and health informatics (BHI), pp 61–64. doi:10.1109/BHI.2014.6864304

  18. Kass M, Witkin A, Terzopoulos D (1988) Snakes: active contour models. Int J Comput Vis 331(4):321–331

    Article  Google Scholar 

  19. Lachat C, Dobrzynski C, Pellegrini F (2014) Parallel mesh adaptation using parallel graph partitioning. In: Proceedings of the 11th World Congress on computational mechanics, pp 1–12

  20. Lehmann TM, Bredno J, Spitzer K (2003) On the design of active contours for medical image segmentation. A scheme for classification and construction. Methods Inf Med 42(1):89–98. doi:10.1267/METH03010089

  21. Lötjönen J, Reissman PJ, Magnin IE, Katila T (1999) Model extraction from magnetic resonance volume data using the deformable pyramid. Med Image Anal 3(4):387–406

    Article  PubMed  Google Scholar 

  22. McInerney T, Terzopoulos D (1996) Deformable models in medical image analysis: a survey. In: Mathematical methods in biomedical image analysis, 1996, Proceedings of the workshop on, vol 1, pp 171–180. Elsevier. doi:10.1109/MMBIA.1996.534069

  23. Meier U, López O, Monserrat C, Juan MC, Alcañiz M (2005) Real-time deformable models for surgery simulation: a survey. Comput Methods Programs Biomed 77(3):183–197

    Article  CAS  PubMed  Google Scholar 

  24. MultiScaleHuman project

  25. Nealen A, Müller M, Keiser R, Boxerman E, Carlson M (2006) Physically based deformable models in computer graphics. Comput Graph Forum 25(4):809–836. doi:10.1111/j.1467-8659.2006.01000.x

    Article  Google Scholar 

  26. Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulations. J Comput Phys 79(1):12–49. doi:10.1016/0021-9991(88)90002-2

    Article  Google Scholar 

  27. Sled JG, Zijdenbos AP, Evans AC (1998) A nonparametric method for automatic correction of intensity nonuniformity in MRI data. IEEE Trans Med Imaging 17(1):87–97. doi:10.1109/42.668698

    Article  CAS  PubMed  Google Scholar 

  28. Sumengen S, Eren MT, Yesilyurt S, Balcisoy S (2008) A multi-resolution mesh representation for deformable objects in collaborative virtual environments. In: Communications in computer and information science, vol 21 CCIS, pp 75–87

  29. Szeliski R, Tonnesen D (1992) Surface modeling with oriented particle systems. ACM SIGGRAPH Comput Graph 26(2):185–194. doi:10.1145/142920.134037

    Article  Google Scholar 

  30. Tang Z, Rong G, Guo X, Prabhakaran B (2010) Streaming 3D shape deformations in collaborative virtual environment. In: 2010 IEEE virtual reality conference (VR) pp 183–186. doi:10.1109/VR.2010.5444793

  31. Terzopoulos D, Platt J, Barr A, Fleischer K (1987) Elastically deformable models. SIGGRAPH. Comput Graph 21(4):205–214. doi:10.1145/37402.37427

  32. Terzopoulos D, Witkin A (1988) Physically based models with rigid and deformable components. IEEE Comput Graph Appl 8:41–51. doi:10.1109/38.20317

    Article  Google Scholar 

  33. Volino P, Magnenat-Thalmann N (2005) Implicit midpoint integration and adaptive damping for efficient cloth simulation. Comput Animat Virtual Worlds 16:163–175

    Article  Google Scholar 

  34. Yoo TS, Ackerman MJ, Lorensen WE, Schroeder W, Chalana V, Aylward S, Metaxas D, Whitaker R (2002) Engineering and algorithm design for an image processing API: a technical report on ITK–the insight toolkit. Stud Health Technol Inform 85:586–592

    PubMed  Google Scholar 

Download references

Acknowledgments

This work has been funded by the EU FP7 Marie Curie Initial Training Network project Multi-scale Biological Modalities for Physiological Human Articulation (MultiScaleHuman) under Grant Number 289897.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthias Becker.

Ethics declarations

Conflict of interest

Matthias Becker, Niels Nijdam and Nadia Magnenat-Thalmann declare that they have no conflict of interest.

Informed consent

For the image data that have been used in this work, informed consent was obtained from all patients. The Ethical Committee for Research On Humans (CEREH) of the Geneva University Hospitals and the Swiss Agency for Therapeutic Products granted their approval for this study.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Becker, M., Nijdam, N. & Magnenat-Thalmann, N. Coupling strategies for multi-resolution deformable meshes: expanding the pyramid approach beyond its one-way nature. Int J CARS 11, 695–705 (2016). https://doi.org/10.1007/s11548-015-1241-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11548-015-1241-y

Keywords

Navigation