Skip to main content
Log in

Computer simulation and image guidance for individualised dynamic spinal stabilization

  • Original Article
  • Published:
International Journal of Computer Assisted Radiology and Surgery Aims and scope Submit manuscript

Abstract

Purpose

Dynamic implants for the human spine are used to re-establish regular segmental motion. However, the results have often been unsatisfactory and complications such as screw loosening are common. Individualisation of appliances and precision implantation are needed to improve the outcome of this procedure. Computer simulation, virtual implant optimisation and image guidance were used to improve the technique.

Methods

A human lumbar spine computer model was developed using multi-body simulation software. The model simulates spinal motion under load and degenerative changes. After virtual degeneration of a L4/5 segment, virtual pedicle screw-based implants were introduced. The implants’ positions and properties were iteratively optimised. The resulting implant positions were used as operative plan for image guidance and finally implemented in a physical spine model.

Results

In the simulation, the introduction and optimisation of virtually designed dynamic implants could partly compensate for the effects of virtual lumbar segment degeneration. The optimised operative plan was exported to two different image-guidance systems for transfer to a physical spine model.

Conclusion

Three-dimensional computer graphic simulation is a feasible means to develop operative plans for dynamic spinal stabilization. These operative plans can be transferred to commercially available image-guidance systems for use in implantation of physical implants in a spine model. This concept has important potential in the design of operative plans and implants for individualised dynamic spine stabilization surgery.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Bothmann M, Kast E, Boldt GJ, Oberle J (2008) Dynesys fixation for lumbar spine degeneration. Neurosurg Rev 31(2):189–196

    Article  PubMed  Google Scholar 

  2. Prud’homme M, Barrios C, Rouch P, Charles YP, Steib JP, Skalli W (2014) Clinical outcomes and complications after pedicle-anchored dynamic or hybrid lumbar spine stabilization: a systematic literature review. J Spinal Disord Tech. [Epub ahead of print]

  3. Haher TR, Bergman M, O’Brien M, Felmly WT, Choueka J, Welin D, Chow G, Vassiliou A (1991) The effect of the three columns of the spine on the instantaneous axis of rotation in flexion and extension. Spine 16(8 Suppl):312–318

    Google Scholar 

  4. Niemeyer F, Wilke HJ, Schmidt H (2012) Geometry strongly influences the response of numerical models of the lumbar spine-a probabilistic finite element analysis. J Biomech 45(8):1414–1423

    Article  PubMed  Google Scholar 

  5. Galbusera F, Anasetti F, Bellini CM, Costa F, Fornari M (2010) The influence of the axial, antero-posterior and lateral positions of the center of rotation of a ball-and-socket disc prosthesis on the cervical spine biomechanics. Clin Biomech 25(5):397–401

    Article  Google Scholar 

  6. Rohlmann A, Mann A, Zander T, Bergmann G (2009) Effect of an artificial disc on lumbar spine biomechanics: a probabilistic finite element study. Eur Spine J 18(1):89–97

    Article  PubMed Central  PubMed  Google Scholar 

  7. Rohlmann A, Burra NK, Zander T, Bergmann G (2007) Comparison of the effects of bilateral posterior dynamic and rigid fixation devices on the loads in the lumbar spine: a finite element analysis. Eur Spine J 16(8):1223–1231

    Article  PubMed Central  PubMed  Google Scholar 

  8. Tian NF, Huang QS, Zhou P, Zhou Y, Wu RK, Lou Y, Xu HZ (2011) Pedicle screw insertion accuracy with different assisted methods: a systematic review and meta-analysis of comparative studies. Eur Spine J 20(6):846–859

    Article  PubMed Central  PubMed  Google Scholar 

  9. Gruber K, Ruder H, Denoth J, Schneider K (1998) A comparative study of impact dynamics: wobbling mass model versus rigid body models. J Biomech 31(5):439–444

    Article  CAS  PubMed  Google Scholar 

  10. Schmidt H, Galbusera F, Rohlmann A, Shirazi-Adl A (2013) What have we learned from finite element model studies of lumbar intervertebral discs in the past four decades? J Biomech 46(14):2342–2355

    Article  PubMed  Google Scholar 

  11. Zhang QH, Teo EC (2008) Finite element application in implant research for treatment of lumbar degenerative disc disease. Med Eng Phys 30(10):1246–1256

    Article  PubMed  Google Scholar 

  12. Lin HM, Pan YN, Liu CL, Huang LY, Huang CH, Chen CS (2013) Biomechanical comparison of the K-ROD and Dynesys dynamic spinal fixator systems—a finite element analysis. Biomed Mater Eng 23(6):495–505

    PubMed  Google Scholar 

  13. Nolden M, Zelzer S, Seitel A, Wald D, Müller M, Franz AM, Maleike D, Fangerau M, Baumhauer M, Maier-Hein L, Maier-Hein KH, Meinzer HP, Wolf I (2013) The medical imaging interaction toolkit: challenges and advances. Int J Comput Assist Radiol Surg 8(4):607–620

    Article  PubMed  Google Scholar 

  14. Heuer F, Schmidt H, Klezl Z, Claes L, Wilke HJ (2007) Stepwise reduction of functional spinal structures increase range of motion and change lordosis angle. J Biomech 40(2):271–280

    Article  PubMed  Google Scholar 

  15. White AA, Panjabi MM (1991) Clinical biomechanics of the spine (2nd issue). Philadelphia, J.B., Lippincott Company

  16. Hausen U, Bauer S, Gruber K (2012) Biomechanical effects of a spinal implant–investigation through MBS computer modelling. Biomed Tech (Berl) 57(Suppl 1):136–139

  17. Schmölz W, Onder U, Martin A, von Strempel A (2009) Non-fusion instrumentation of the lumbar spine with a hinged pedicle screw system rod system: an in vitro experiment. Eur Spine J 18(10):1478–1485

  18. Bauer S, Hausen U, Gruber K (2012) Effects of individual spine curvatures—a comparative study with the help of computer modelling. Biomed Tech (Berl) 57(Suppl 1):132–135

  19. Natarajan RN, Andersson GB, Patwardhan AG, Andriacchi TP (1999) Study on effect of graded facetectomy on change in lumbar motion segment torsional flexibility using three- dimensional continuum contact representation for facet joints. J Biomech Eng 21(2):215–221

    Article  Google Scholar 

  20. Rohlmann A, Zander T, Rao M, Bergmann G (2009) Realistic loading conditions for upper body bending. J Biomech 42(7):884–890

    Article  CAS  PubMed  Google Scholar 

  21. Hoag JM, Kosok M, Moser JR (1960) Kinematic analysis and classification of vertebral motion. J Am Osteopath Assoc 59:899–908

    CAS  PubMed  Google Scholar 

  22. Kantelhardt SR, Martinez R, Baerwinkel S, Burger R, Giese A, Rohde V (2011) Perioperative course and accuracy of screw positioning in conventional, open robotic-guided and percutaneous robotic-guided, pedicle screw placement. Eur Spine J 20(6):860–868

    Article  PubMed Central  PubMed  Google Scholar 

  23. Rizzi MA, Covelli B, Bivetti J, Lüthi B (1977) Biomechanics of vertebral segments. Clinical and prognostical interpretations. Arch Orthop Unfallchir 87(1):111–116

    Article  CAS  PubMed  Google Scholar 

  24. Reichmann S, Berglund E, Lundgren K (1972) The motion center in the lumbar spine during flexion and extension. Anat Entwicklungsgesch 138(3):283–287

    Article  CAS  Google Scholar 

  25. Yoshioka T, Tsuji H, Hirano N, Sainoh S (1990) Motion characteristic of the normal lumbar spine in young adults: instantaneous axis of rotation and vertebral center motion analyses. J Spinal Disord 3(2):103–113

    CAS  PubMed  Google Scholar 

  26. Pearcy MJ, Bogduk N (1988) Instantaneous axes of rotation of the lumbar intervertebral joints. Spine 13(9):1033–1041

    Article  CAS  PubMed  Google Scholar 

  27. Gertzbein SD, Holtby R, Tile M, Kapasouri A, Chan KW, Cruickshank B (1984) Determination of a locus of instantaneous centers of rotation of the lumbar disc by moiré fringes: a new technique. Spine 9(4):409–413

    Article  CAS  PubMed  Google Scholar 

  28. Takata Y, Matsuura T, Higashino K, Sakai T, Mishiro T, Suzue N, Kosaka H, Hamada D, Goto T, Nishisho T, Goda Y, Sato R, Tsutsui T, Tonogai I, Tezuka F, Mineta K, Kimura T, Nitta A, Higuchi T, Hama S, Sairyo K (2014) Hybrid technique of cortical bone trajectory and pedicle screwing for minimally invasive spine reconstruction surgery: a technical note. J Med Invest 61(3–4):388–392

    Article  PubMed  Google Scholar 

  29. Iwatsuki K, Yoshimine T, Ohnishi Y, Ninomiya K, Ohkawa T (2014) Isthmus-guided cortical bone trajectory for pedicle screw insertion. Orthop Surg 6(3):244–248

    Article  PubMed  Google Scholar 

  30. Kainmueller D, Lamecker H, Zachow S, Hege H-C (2009) An articulated statistical shape model for accurate hip joint segmentation. In: Proceedings of the18th annual international conference of the IEEE engineering in medicine and biology society (EMBC), Minneapolis, pp 6345–6351

  31. Dworzak J, Lamecker H, von Berg J, Klinder T, Lorenz C, Kainmüller D, Seim H, Hege HC, Zachow S (2010) 3D reconstruction of the human rib cage from 2D projection images using a statistical shape model. Int J Comput Assist Radiol Surg 5(2):111–124

    Article  PubMed  Google Scholar 

Download references

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. R. Kantelhardt.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kantelhardt, S.R., Hausen, U., Kosterhon, M. et al. Computer simulation and image guidance for individualised dynamic spinal stabilization. Int J CARS 10, 1325–1332 (2015). https://doi.org/10.1007/s11548-014-1138-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11548-014-1138-1

Keywords

Navigation