Skip to main content

Advertisement

Log in

Positioning error evaluation of GPU-based 3D ultrasound surgical navigation system for moving targets by using optical tracking system

  • Original Article
  • Published:
International Journal of Computer Assisted Radiology and Surgery Aims and scope Submit manuscript

Abstract

Purpose

A near real-time three-dimensional (3D) ultrasound navigation system has been developed for guiding surgery involving internal organs that move and change shape (e.g., abdominal surgery, fetal surgery). In practical applications, significant errors arise between the actual navigation-image positions depending on the time delay of the system. Therefore, the positioning error of the system relative to the target velocity was evaluated.

Methods

We developed a method for evaluating the positioning error of a graphics processing unit-based 3D ultrasound surgical navigation system (with an optical tracking system) for moving targets. The effectiveness of this system was quantitatively evaluated in terms of its image processing runtime, target registration error (TRE), and positioning error for a moving target. The positioning error was evaluated for a phantom (with an optical tracking marker) moving at speeds of 5–25 mm/s, and the navigation target was the center point of the phantom. The imaging range of the volume data was set to the maximum angle and range of the ultrasound diagnostic system (update rate: 4 Hz).

Results

The image processing runtime was 27.43 ± 4.80 ms, and the TRE was 1.50 ± 0.28 mm. The positioning error was 4.24 ± 0.12 mm for a target moving at a speed of 10 mm/s and 5.36 ± 0.10 mm for one moving at 15 mm/s.

Conclusion

The effectiveness of an ultrasound navigation system was quantitatively evaluated by using the positioning error for a moving target. This navigation system demonstrated high calculation speed and positioning accuracy for a moving target. Therefore, it is suitable to guide the surgery of abdominal internal organs (e.g., in fetal and abdominal surgeries) that move or change shape during breathing and surgical approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Sakuma I, Tanaka Y, Takai Y, Kobayashi E, Dohi T, Schorr O, Hata N, Iseki H, Muragaki Y, Hori T, Takakura K (2001) Three-dimensional digital ultrasound imaging system for surgical navigation. Int Congr Ser 1230(0): 117–122. doi:10.1016/s0531-5131(01)00027-9

    Article  Google Scholar 

  2. Sjolie E, Lango T, Ystgaard B, Tangen GA, Nagelhus Hernes TA, Marvik R (2003) 3D ultrasound-based navigation for radiofrequency thermal ablation in the treatment of liver malignancies. Surg Endosc 17(6): 933–938. doi:10.1007/s00464-002-9116-z

    Article  PubMed  CAS  Google Scholar 

  3. Blackall JM, Penney GP, King AP, Hawkes DJ (2005) Alignment of sparse freehand 3-D ultrasound with preoperative images of the liver using models of respiratory motion and deformation. IEEE Trans Med Imaging 24(11): 1405–1416. doi:10.1109/TMI.2005.856751

    Article  PubMed  Google Scholar 

  4. Beller S, Hunerbein M, Eulenstein S, Lange T, Schlag PM (2007) Feasibility of navigated resection of liver tumors using multiplanar visualization of intraoperative 3-dimensional ultrasound data. Ann Surg 246(2): 288–294. doi:10.1097/01.sla.0000264233.48306.99

    Article  PubMed  Google Scholar 

  5. Nakamoto M, Hirayama H, Sato Y, Konishi K, Kakeji Y, Hashizume M, Tamura S (2007) Recovery of respiratory motion and deformation of the liver using laparoscopic freehand 3D ultrasound system. Med Image Anal 11(5): 429–442. doi:10.1016/j.media.2007.07.009

    Article  PubMed  Google Scholar 

  6. Konishi K, Nakamoto M, Kakeji Y, Tanoue K, Kawanaka H, Yamaguchi S, Ieiri S, Sato Y, Maehara Y, Tamura S, Hashizume M (2007) A real-time navigation system for laparoscopic surgery based on three-dimensional ultrasound using magneto-optic hybrid tracking configuration. Int J Comput Assis Radiol Surg 2(1): 1–10. doi:10.1007/s11548-007-0078-4

    Article  Google Scholar 

  7. Nakamura R, Kitazumi G, Nagamura S, Tanabe R, Sudo M, Katsuike Y, Mochizuki T, Chiba T (2011) Surgical navigation system using Intraoperative real-time 3D ultrasound imaging for fetal surgery. J Japan Soc Comput Aided Surg 13(2):87–95, 2011. [In Japanese]

    Google Scholar 

  8. Igarashi T, Naya Y, Shimomura Y, Yamaguchi T, Makino H (2009) Water filled endoscopic surgery (WAFLES): first experience in animal model. Soc Am Gastrointest Endosc Surg (SAGES) 2009: 195

    Google Scholar 

  9. Igarashi T, Shimomura Y, Yamaguchi T, Kawahira H, Makino H, Yu WW, Naya Y (2011) Water-Filled Laparoendoscopic Surgery (WAFLES): Feasibility Study in Porcine Model. J Laparoendosc Adv Surg Tech Part A. doi:10.1089/lap.2011.0404

  10. Liao H, Tsuzuki M, Mochizuki T, Kobayashi E, Chiba T, Sakuma I (2009) Fast image mapping of endoscopic image mosaics with three-dimensional ultrasound image for intrauterine fetal surgery. Minimally Invasive Therapy & Allied Technologies: MITAT: Official Journal of the Society for Minimally Invasive Therapy 18(6):332–340. doi:10.3109/13645700903201217

  11. Lim S, Kwon K, Shin B-S (2009) GPU-based interactive visualization framework for ultrasound datasets. Comput Animat Virtual Worlds 20(1): 11–23. doi:10.1002/cav.v20:1

    Article  Google Scholar 

  12. Kutter O, Shams R, Navab N (2009) Visualization and GPU-accelerated simulation of medical ultrasound from CT images. Comput Methods Prog Biomed 94(3): 250–266. doi:10.1016/j.cmpb.2008.12.011

    Article  Google Scholar 

  13. So HKH, Junying C, Yiu BYS, Yu ACH (2011) Medical ultrasound imaging: to GPU or not to GPU. IEEE Micro 31(5): 54–65

    Article  Google Scholar 

  14. Arun KS, Huang TS, Blostein SD (1987) Least-squares fitting of two 3-d point sets. IEEE Trans Pattern Anal Mach Intell 9(5): 698–700

    Article  PubMed  CAS  Google Scholar 

  15. Maurer CR Jr, Fitzpatrick JM, Wang MY, Galloway RL Jr, Maciunas RJ, Allen GS (1997) Registration of head volume images using implantable fiducial markers. IEEE Trans Med Imaging 16(4): 447–462

    Article  PubMed  Google Scholar 

  16. Davies SC, Hill AL, Holmes RB, Halliwell M, Jackson PC (1994) Ultrasound quantitation of respiratory organ motion in the upper abdomen. Br J Radiol 67(803): 1096–1102. doi:10.1259/0007-1285-67-803-1096

    Article  PubMed  CAS  Google Scholar 

  17. Brandner ED, Wu A, Chen H, Heron D, Kalnicki S, Komanduri K, Gerszten K, Burton S, Ahmed I, Shou Z (2006) Abdominal organ motion measured using 4D CT. Int J Radiat Oncol Biol Phys 65(2): 554–560. doi:10.1016/j.ijrobp.2005.12.042

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ryoichi Nakamura.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sato, I., Nakamura, R. Positioning error evaluation of GPU-based 3D ultrasound surgical navigation system for moving targets by using optical tracking system. Int J CARS 8, 379–393 (2013). https://doi.org/10.1007/s11548-012-0789-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11548-012-0789-z

Keywords

Navigation