Skip to main content

Advertisement

Log in

Abstract

Purpose

Statistical shape models have shown improved reliability and consistency in cardiac image segmentation. They incorporate a sufficient amount of a priori knowledge from the training datasets and solve some major problems such as noise and image artifacts or partial volume effect. In this paper, we construct a 4D statistical model of the left ventricle using human cardiac short-axis MR images.

Methods

Kernel PCA is utilized to explore the nonlinear variation of a population. The distribution of the landmarks is divided into the inter- and intra-subject subspaces. We compare the result of Kernel PCA with linear PCA and ICA for each of these subspaces. The initial atlas in natural coordinate system is built for the end-diastolic frame. The landmarks extracted from it are propagated to all frames of all datasets. We apply the 4D KPCA-based ASM for segmentation of all phases of a cardiac cycle and compare it with the conventional ASM.

Results

The proposed statistical model is evaluated by calculating the compactness capacity, specificity and generalization ability measures. We investigate the behavior of the nonlinear model for different values of the kernel parameter. The results show that the model built by KPCA is less compact than PCA but more compact than ICA. Although for a constant number of modes the reconstruction error is a little higher for the KPCA-based statistical model, it produces a statistical model with substantially better specificity than PCA- and ICA-based models.

Conclusion

Quantitative analysis of the results demonstrates that our method improves the segmentation accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

References

  1. American Heart Association (2010) 2010 Heart and Stroke Statistical Update. [Online]. Available: http://www.americanheart.org

  2. Frangi AF, Niessen WJ, Viergever MA (2001) Three-dimensional modeling for functional analysis of cardiac images: a review. IEEE Trans Medical Imaging 20(1): 2–25

    Article  CAS  Google Scholar 

  3. Jolly MP, Xue H, Grady L, Gühring J (2009) Combining registration and minimum surfaces for the segmentation of the left ventricle in cardiac cine MR images. In: Proceedings MICCAI, LNCS 5762, pp 910–918

  4. Cousty J, Najman L, Couprie M, Clément-Guinaudeau S, Goissen T, Garot J (2010) Segmentation of 4D cardiac MRI: automated method based on spatio-temporal watershed cuts. J Image Vis Comput 28(8): 1229–1243

    Article  Google Scholar 

  5. Schaerer C, Casta C, Pousin J, Clarysse P (2010) A dynamic elastic model for segmentation and tracking of the heart in MR image sequences. Medical Image Anal 14(6): 738–749

    Article  Google Scholar 

  6. Grande LC, Ferrero GVS, Higuera PC, Calvar JASR, Orodea AR, Fernández MM, López CA (2011) Unsupervised 4D myocardium segmentation with a Markov random field based deformable model. Medical Image Anal 15(3): 283–301

    Article  Google Scholar 

  7. Zhuang X, Rhode KS, Razavi RS, Hawkes DJ, Ourselin S (2010) A registration-based propagation framework for automatic whole heart segmentation of cardiac MRI. IEEE Trans Medical Imaging 29(9): 1612–1625

    Article  Google Scholar 

  8. Petitjean C, Dacher JN (2011) A review of segmentation methods in short axis cardiac MR images. Medical Image Anal 15(2): 169–184

    Article  Google Scholar 

  9. Heimann T, Meinzer HP (2009) Statistical shape models for 3D medical image segmentation: a review. Medical Image Anal 13(4): 543–563

    Article  Google Scholar 

  10. Rueckert D, Frangi AF, Schnabel JA (2003) Automatic construction of 3D statistical deformation models of the brain using non-rigid registration. IEEE Trans Medical Imaging 22(8): 1014–1025

    Article  Google Scholar 

  11. Lorenzo-Valdes M, Sanchez-Ortiz GI, Elkington A, Mohiaddin R, Rueckert D (2004) Segmentation of 4D cardiac MR images using a probabilistic atlas and the EM algorithm. Medical Image Anal 8(3): 255–265

    Article  Google Scholar 

  12. Pilgram R, Schubert R, Fritscher KD, Zwick RH, Schocke MF, Trieb T, Pachinger O (2006) Shape discrimination of healthy and diseased cardiac ventricles using medial representation. Int J CARS 1(1): 33–38

    Article  Google Scholar 

  13. Cootes TF, Taylor CJ, Cooper DH, Graham J (1995) Active shape models: their training and application. Comput Vis Image Understand 61(1): 38–59

    Article  Google Scholar 

  14. Frangi AF, Rueckert D, Schnabel JA, Niessen WJ (2002) Automatic construction of multiple-object three-dimensional statistical shape models: application to cardiac modeling. IEEE Trans Medical Imaging 21(9): 1151–1164

    Article  Google Scholar 

  15. Lotjonen J, Kivisto S, Koikkalainen J, Smutek D, Lauerma K (2004) Statistical shape model of atria, ventricles and epicardium from short- and long-axis MR images. Medical Image Anal 8(3): 371–386

    Article  CAS  Google Scholar 

  16. Ordas S, Oubel E, Leta R, Carreras F, Frangi AF (2007) A statistical shape model of the heart and its application to model-based segmentation. In: Proceedings of SPIE medical imaging, vol 6511

  17. Perperidis D, Mohiaddin R, Rueckert D (2005) Construction of a 4D statistical atlas of the cardiac anatomy and its use in classification. In: Proceedings of MICCAI, LNCS 3750, pp 402–405

  18. Stegmann MB, Pedersen D (2005) Bi-temporal 3D active appearance models with applications to unsupervised ejection fraction estimation. In: Proceedings of SPIE medical imaging, vol 5747, pp 336–350

  19. Zhang H, Wahle A, Johnson RK, Scholz TD, Sonka M (2010) 4D cardiac MR image analysis: left and right ventricular morphology and function. IEEE Trans Medical Imaging 29(2): 350–364

    Article  Google Scholar 

  20. Zhu Y, Papademetris X, Sinusas AJ, Duncan JS (2010) Segmentation of the left ventricle from cardiac MR images using a subject-specific dynamical model. IEEE Trans Medical Imaging 29(3): 669–687

    Article  Google Scholar 

  21. O’Brien SP, Ghita O, Whelan PF (2011) A novel model-based 3D+time left ventricular segmentation technique. IEEE Trans Medical Imaging 30(2): 461–474

    Article  Google Scholar 

  22. Suinesiaputra A, Frangi AF, Kaandorp TAM, Lamb HJ, Bax JJ, Reiber JHC, Lelieveldt BPF (2009) Automated detection of regional wall motion abnormalities based on a statistical model applied to multislice short-axis cardiac MR images. IEEE Trans Medical Imaging 28(4): 595–607

    Article  Google Scholar 

  23. Twining CJ, Taylor CJ (2001) Kernel principal component analysis and the construction of non-linear active shape models. In: Proceedings of British machine vision conference, vol 1, pp 23–32

  24. Uzumcu M, Frangi AF, Reiber JHC, Lelieveldt BPF (2003) Independent component analysis in statistical shape models. In: Proceedings of SPIE medical imaging, vol 5032, pp 375–383

  25. Koikkalainen J, Lotjonen J (2004) Image segmentation with the combination of PCA- and ICA-based modes of shape variation. In: Proceedings of IEEE international symposium on biomedical imaging: from Nano to Macro, vol 1, pp 149–152

  26. Hilger KB, Larsen R, Wrobel MC (2003) Growth modeling of human mandibles using non-euclidean metrics. Medical Image Anal 7(4): 425–433

    Article  Google Scholar 

  27. Larsen R, Hilger KB (2003) Statistical shape analysis using non-Euclidean metrics. Medical Image Anal 7(4): 417–423

    Article  Google Scholar 

  28. Dambreville S, Rathi Y, Tannenbaum A (2008) A framework for image segmentation using shape models and kernel space shape priors. IEEE Trans Pattern Anal Mach Intell 30(8): 1385–1399

    Article  PubMed  Google Scholar 

  29. Rathi Y, Dambreville S, Tannenbaum A (2006) Comparative analysis of kernel methods for statistical shape learning. In: Proceedings of 2nd international workshop computer vision approaches to medical image analysis, vol 2

  30. Cremers D, Kohlberger T, Schnorr C (2003) Shape statistics in kernel space for variational image segmentation. Pattern Recogn 36: 1929–1943

    Article  Google Scholar 

  31. Andreopoulos A, Tsotsos JK (2008) Efficient and generalizable statistical models of shape and appearance for analysis of cardiac MRI. Medical Image Anal 12(3): 335–357

    Article  Google Scholar 

  32. Herman GT, Zheng J, Bucholtz CA (1992) Shape-based interpolation. IEEE Comput Graph Appl, 69–79

  33. Raya S, Udupa J (1990) Shape-based interpolation of multidimensional objects. IEEE Trans Medical Imaging 9(1): 33–42

    Article  Google Scholar 

  34. Newman T, Yi H (2006) A survey of the marching cubes algorithm. Comput Graph 30(5): 854–879

    Article  Google Scholar 

  35. Knapp M (2002) Mesh decimation using VTK, Technical report, Vienna University of Technology

  36. Goodall C (1991) Procrustes methods in the statistical analysis of shape. J R Stat Soc 53(2): 285–339

    Google Scholar 

  37. Cootes TF (2004) Statistical models of appearance for computer vision, Technical Report, University of Manchester

  38. Davies R, Twining C, Taylor C (2008) Statistical models of shape: optimization and evaluation. 1st edn. Springer, London

    Google Scholar 

  39. Twining CJ, Taylor CJ (2003) The use of kernel principal component analysis to model data distribution. Pattern Recogn 36: 217–227

    Article  Google Scholar 

  40. Mika S, Scholkopf B, Smola A, Muller K, Scholz M, Ratsch G (1998) Kernel PCA and denoising in feature spaces. Adv Neural Inf Process Syst 11

  41. Kwok , Tsang I (2004) The pre-image problem in kernel methods. IEEE Trans Neural Netw 15(6): 1517–1525

    Article  PubMed  Google Scholar 

  42. Rathi Y, Dambreville S, Tannenbaum A (2006) Statistical shape analysis using kernel PCA. In: Proceedings of SPIE medical imaging, vol 6064, pp 425–432

  43. Department of Computer Science and Engineering, Centre for Vision Research, York University. [Online]. Available: http://www.cse.yorku.ca/~ridataset/

  44. Schnabel A, Rueckert D, Quist M, Blackall JM, Castellano Smith AD, Hartkens T, Penney GP, Hall WA, Liu H, Truwit CL, Gerritsen FA, Hill DLG, Hawkes DJ (2001) A generic framework for non-rigid registration based on non-uniform multi-level free-form deformations. In: Proceedings of MICCAI, LNCS 2208, pp 573–581

  45. Avila Lisa S, Barre S, Blue R, Cole D, Geveci B, Hoffman WA, King B, Law CC, Martin KM, Schroeder WJ, Squillacote AH, The VTK User’s Guide (2011) Kitware, 11th edn., New York

  46. Franc V, Hlavac V (2004) Statistical pattern recognition toolbox for MATLAB, Technical Report, Czech Technical University Prague, June 2004

  47. Leiner B, Jimena O, Boris ER, Fernando A, Enrique V (2012) Segmentation of 4D cardiac computed tomography images using active shape models. In: Proceedings of SPIE medical imaging, vol 8436

  48. Kroon D-J. Active shape model (ASM) and active appearance model (AAM). Available: http://www.mathworks.com/matlabcentral/fileexchange/

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shahrooz Faghih Roohi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Faghih Roohi, S., Aghaeizadeh Zoroofi, R. 4D statistical shape modeling of the left ventricle in cardiac MR images. Int J CARS 8, 335–351 (2013). https://doi.org/10.1007/s11548-012-0787-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11548-012-0787-1

Keywords

Navigation