Skip to main content

Advertisement

Log in

Hybrid image visualization tool for 3D integration of CT coronary anatomy and quantitative myocardial perfusion PET

  • Original Article
  • Published:
International Journal of Computer Assisted Radiology and Surgery Aims and scope Submit manuscript

Abstract

Purpose

Multimodal cardiac imaging by CTA and quantitative PET enables acquisition of patient-specific coronary anatomy and absolute myocardial perfusion at rest and during stress. In the clinical setting, integration of this information is performed visually or using coronary arteries distribution models. We developed a new tool for CTA and quantitative PET integrated 3D visualization, exploiting XML and DICOM clinical standards.

Methods

The hybrid image tool (HIT) developed in the present study included four main modules: (1) volumetric registration for spatial matching of CTA and PET data sets, (2) an interface to PET quantitative analysis software, (3) a derived DICOM generator able to build DICOM data set from quantitative polar maps, and (4) a 3D visualization tool of integrated anatomical and quantitative flow information. The four modules incorporated in the HIT tool communicate by defined standard XML files: XML-transformation and XML MIST standards.

Results

The HIT tool implements a 3D representation of CTA showing real coronary anatomy fused to PET-derived quantitative myocardial blood flow distribution. The technique was validated on 16 data sets from EVINCI study population. The validation of the method confirmed the high matching between “original” and derived data sets as well as the accuracy of the registration procedure.

Conclusions

Three-dimensional integration of patient- specific coronary artery anatomy provided by CTA and quantitative myocardial blood flow obtained from PET imaging can improve cardiac disease assessment. The HIT tool introduced in this paper may represent a significant advancement in the clinical use of this multimodal approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Di Carli MF, Dorbala S, Hachamovitch R (2006) Integrated cardiac PET-CT for the diagnosis and management of CAD. J Nucl Cardiol 13: 139–144

    Article  PubMed  Google Scholar 

  2. Gaemperli O, Kaufmann PA (2008) Hybrid cardiac imaging: more than the sum of its parts. J Nucl Cardiol 15: 123–126

    Article  PubMed  Google Scholar 

  3. Di Carli MF, Hachamovitch R (2008) Hybrid PET/CT is greater than the sum of its parts. J Nucl Cardiol 15: 118–122

    Article  PubMed  Google Scholar 

  4. Javadi MS, Lautamäki R, Merrill J, Voicu C, Epley W, McBride G, Bengel FM (2010) Definition of vascular territories on myocardial perfusion images by integration with true coronary anatomy: a hybrid PET/CT analysis. J Nucl Med 51: 198–203

    Article  PubMed  Google Scholar 

  5. Knuuti J, Kaufmann PA (2009) Hybrid imaging: PET-CT and SPECT-CT. In: Zamorano JL et al (eds) The ESC textbook of cardiovascular imaging. Springer, London, Limited 2010, pp 89–99

  6. Beller GA (2010) Recent advances and future trends in multimodality cardiac imaging. Heart Lung Circ 19: 193–209

    Article  PubMed  Google Scholar 

  7. Marinelli M, Positano V, Tucci F, Neglia D (2012) Automatic hboxPET-CT image registration method based on mutual information and genetic algorithms. The Scientific World Journal, vol 2012, Article ID 567067, p 12. doi:10.1100/2012/567067

  8. Mäkelä T, Clarysse P, Sipilä O, Pauna N, Pham QC, Katila T, Magnin IE (2002) A review of cardiac image registration methods. IEEE Trans Med Imag 21: 1011–1021

    Article  Google Scholar 

  9. Cerqueira MD, Weissman NJ, Dilsizina V, Jacobs AK, Kaul S, Laskey WK, Pennell DJ, Rumberger JA, Ryan T, Verani MS (2002) Standardized myocardial segmentation and nomenclature for tomographic imaging of the heart: a statement for healthcare professionals from the cardiac imaging committee of the council on clinical cardiology of the american heart association. Circulation 105: 539–542

    Article  PubMed  Google Scholar 

  10. Masci PG, Marinelli M, Piacenti M, Lorenzoni V, Positano V, Lombardi M, L’Abbate A, Neglia D (2010) Myocardial structural, perfusion and metabolic correlates of left bundle branch block mechanical derangement in patients with dilated cardiomyopathy—a tagged cardiac magnetic resonance and positron emission tomography study. Circ Cardiovasc Imaging 3: 482–490

    Article  PubMed  Google Scholar 

  11. Kaufmann PA, Camici PG (2004) Myocardial blood flow measurement by PET: technical aspects and clinical application. J Nucl Med 46: 75–88

    Google Scholar 

  12. Schindler TH, Schelbert HR, Quercioli A, Dilsizian V (2010) Cardiac PET imaging for detection and monitoring of coronary artery disease and microvascular health. JACC Imaging 3: 623–640

    Article  Google Scholar 

  13. Stolzmann P, Alkadhi H, Scheffel H, Hennemuth A, Kuehnel C, Baumueller S, Kozerke S, Falk V, Marincek B, Donati OF (2010) Image fusion of coronary CT angiography and cardiac perfusion MRI: a pilot study. Eur Radiol 20: 1174–1179

    Article  PubMed  Google Scholar 

  14. Kajander S, Joutsiniemi E, Saraste M, Pietilä M, Ukkonen H, Saraste A, Sipilä HT, Teräs M, Mäki M, Airaksinen J, Hartiala J, Knuuti J (2010) Cardiac positron emission tomography/computed tomography imaging accurately detects anatomically and functionally significant coronary artery disease. Circulation 122: 603– 613

    Article  PubMed  CAS  Google Scholar 

  15. Knuuti J, Kajander S, Mäki M, Ukkonen H (2009) Quantification of myocardial blood flow will reform the detection of CAD. J Nulc Cardiol 16:497–506

    Google Scholar 

  16. Neglia D, Michelassi C, Trivieri MG, Sambuceti G, Giorgetti A, Pratali L, Gallopin M, Salvadori P, Sorace O, Carpeggiani C, Poddighe R, L’Abbate A, Parodi O (2002) Prognostic role of myocardial blood flow impairment in idiopathic left ventricular dysfunction. Circulation 105: 186–193

    Article  PubMed  Google Scholar 

  17. Extensible Markup Language (XML) 1.0 (Fifth Edition) W3C Recommendation 26 Nov 2008. Available: http://www.w3.org

  18. Marinelli M, Martinez-Möller A, Jensen B, Positano V, Weissmüller S, Navab N, Landini L, Schwaiger M, Nekolla SG (2010) Registration of myocardial PET and SPECT for viability assessment using mutual information. Med Phys 37: 2414–2424

    Article  PubMed  Google Scholar 

  19. Pluim JPW, Maintz JBA, Viergever MA (2003) Mutual-information-based registration of medical images: a survey. IEEE Trans Med Imaging 22: 986–1004

    Article  PubMed  Google Scholar 

  20. Viola P, Wells WM (1997) Alignment by maximization of mutual information. Int J Comput Vis 24: 137–154

    Article  Google Scholar 

  21. Collignon A, Vandermeulen D, Suetens P, Marchal G (1995) 3D multimodality medical image registration using feature space clustering. In: Ayache N (ed) Proceedings of the CVRMed lecture notes in computer science 905/1995. Springer, Berlin, pp 193–204

  22. Nekolla SG, Miethaner C, Nguyen N, Ziegler SI, Schwaiger M (1998) Reproducibility of polar map generation and assessment of defect severity and extent assessment in myocardial perfusion imaging using positron emission tomography. Eur J Nucl Med Mol Imaging 25: 1313–1321

    Article  CAS  Google Scholar 

  23. Musik O, Beanlands RSB, Hutchins GD, Mangner TJ, Nguyen N, Schwaiger M (1993) Validation of nitrogen-13-ammonia tracer kinetic model for quantification of myocardial blood flow using PET. J Nucl Med 34: 83–91

    Google Scholar 

  24. Miller JM et al (2008) Diagnostic performance of coronary angiography by 64-row CT. N Engl J Med 359: 2324–2336

    Article  PubMed  CAS  Google Scholar 

  25. Meijboom WB et al (2008) Diagnostic accuracy of 64-slice computed tomography coronary angriography. A prospective, multicenter, multivendor study. J Am Coll Cardiol 52: 2135–2144

    Article  PubMed  Google Scholar 

  26. Budoff MJ et al (2008) Diagnostic performance of 64-multidetector row coronary computed tomographic angiography for evaluation of coronary artery stenosis in individuals withouit known coronary artery disease. J Am Coll Cardiol 52: 1724–1732

    Article  PubMed  Google Scholar 

  27. Miny JK et al (2011) Age- and sex-related differences in all-cause mortality risk based on coronary computer tomography angiography findings. J Am Coll Cardiol 58: 849–860

    Article  Google Scholar 

  28. Marinelli M, Positano V, Marcheschi P, Todiere G, Esposito N, Puzzuoli S, Marraccini P, Lombardi L, Landini L, Neglia D (2011) Integrated visualization of coronary anatomy and quantitative MRI by CT-MRI image fusion. Magn Reson Mater Phy 24(Supp.1): 406

    Google Scholar 

  29. Segall G (2002) Assessment of myocardial viability by positron emission tomography. Nucl Med Commun 23: 323–330

    Article  PubMed  Google Scholar 

  30. Saraste A, Nekolla SG, Schwaiger M (2008) Contrast-enhanced magnetic imaging in the assessment of myocardial infarction and viability. J Nucl Cardiol 15: 105–117

    Article  PubMed  Google Scholar 

  31. Axel L, Montillo A, Kim D (2005) Tagged magnetic resonance imaging of the heart: a survey. Med Image Anal 9: 376–393

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martina Marinelli.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Marinelli, M., Positano, V., Nekolla, S.G. et al. Hybrid image visualization tool for 3D integration of CT coronary anatomy and quantitative myocardial perfusion PET. Int J CARS 8, 221–232 (2013). https://doi.org/10.1007/s11548-012-0777-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11548-012-0777-3

Keywords

Navigation