Skip to main content
Log in

Identification of residual–recurrent cholesteatoma in operated ears: diagnostic accuracy of dual-energy CT and MRI

  • COMPUTED TOMOGRAPHY
  • Published:
La radiologia medica Aims and scope Submit manuscript

Abstract

Purpose

The aim of this study was to compare the diagnostic accuracy of magnetic resonance imaging (MRI) and dual-energy computed tomography (DECT) to identify residual–recurrent cholesteatoma using the second-look surgery as the reference standard.

Methods

This prospective, institutional review board-approved study included 19 consecutive patients (11 males and 8 females; mean age of 62.2, range 34–80 years). Since five patients were studied bilaterally, a total of 24 ears were evaluated with DECT and MRI between February 2017 and June 2018. Any abnormal middle ear attenuation on high-resolution CT images (HRCT) or DECT color-coded maps, and any abnormal signal on MRI images was evaluated by four experienced radiologists. Diagnostic accuracy values of HRCT, DECT maps and CT numbers (by using receiver operator curves) and MRI were compared. Interobserver and intraobserver agreement were calculated.

Results

Residual–recurrent cholesteatoma was diagnosed at surgery in 16/24 ears (66.6%). MRI and DECT revealed a total of 15/16 and 14/16 cholesteatomas, respectively. The sensitivity, specificity, PPV and NPV and accuracy of MRI and DECT were 93.7, 87.5, 93.7, 87.5, and 91.6% and 87.5, 87.5, 93.3, 87.5 and 87.5%, respectively. CT numbers were significantly different between positive (mean 57.6 HU, range − 65, 112 HU) and negative cases (mean 5.4 HU, range − 100, 66 HU) with p < 0.001. The interobserver and intraobserver agreement were k = 0.87 and k = 0.83, respectively.

Conclusion

DECT may provide an accurate demonstration of residual–recurrent middle ear cholesteatoma.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

DECT:

Dual-energy computed tomography

MRI:

Magnetic resonance imaging

DWI:

Diffusion-weighted images

PPV:

Positive predictive value

NPV:

Negative predictive value

CT:

Computed tomography

DE:

Dual energy

ROI:

Region of interest

AUC:

Area under curve

HRCT:

High-resolution computed tomography

REFERENCES

  1. Swartz JD (1984) Cholesteatomas of the middle ear. Diagnosis, etiology, and complications. Radiol Clin North Am 22:15–35

    CAS  PubMed  Google Scholar 

  2. Henninger B, Kremser C (2017) Diffusion weighted imaging for the detection and evaluation of cholesteatoma. World J Radiol 9(5):217–222

    Article  PubMed  PubMed Central  Google Scholar 

  3. Sarmento KMA Jr, Sampaio ALL, Santos TGT et al (2017) High-frequency conductive hearing loss as diagnostic test for incomplete ossicular discontinuity in non-cholesteatomatous chronic suppurative otitis media. PloS one 12(12):e0189997

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Probst R (2006) The middle ear. In: Probst R, Grevers G, Iro H (eds) Basic otorhinolaryngology: a step-by-step learning guide, 2nd edn. Georg Thieme Verlag, Stuttgart, pp 227–253

    Google Scholar 

  5. Thukral CL, Singh A, Singh S et al (2015) Role of high resolution computed tomography in evaluation of pathologies of temporal bone. J Clin Diagn Res 9(9):TC07–TC10

    PubMed  PubMed Central  Google Scholar 

  6. Más-Estellés F, Mateos-Fernández M, Carrascosa-Bisquert B et al (2012) Contemporary non-echo-planar diffusion-weighted imaging of middle ear cholesteatomas. Radiographics 32(4):1197–1213. https://doi.org/10.1148/rg.324115109

    Article  PubMed  Google Scholar 

  7. Blaney SP, Tierney P, Oyarazabal M et al (2000) CT scanning in “second look” combined approach tympanoplasty. Rev Laryngol Otol Rhinol 121:79–81 (PMID: 10997063)

    CAS  Google Scholar 

  8. Williams MT, Ayache D (2004) Imaging of the postoperative middle ear. Eur Radiol 14:482–495. https://doi.org/10.1007/s00330-003-2198-8 (PMID: 14749948)

    Article  PubMed  Google Scholar 

  9. Lincot J, Veillon F, Riehm S et al (2015) Middle ear cholesteatoma: compared diagnostic performances of two incremental MRI protocols including non-echo planar diffusion-weighted imaging acquired on 3T and 1.5T scanners. J Neuroradiol 42(4):193–201. https://doi.org/10.1016/j.neurad.2014.02.003 (Epub 9 Jul 2014)

    Article  CAS  PubMed  Google Scholar 

  10. Alvo A, Garrido C, Salas Á et al (2014) Use of non-echo-planar diffusion-weighted MR imaging for the detection of cholesteatomas in high-risk tympanic retraction pockets. AJNR Am J Neuroradiol 35(9):1820–1824. https://doi.org/10.3174/ajnr.A3952 (Epub 8 May 2014)

    Article  CAS  PubMed  Google Scholar 

  11. Dremmen MH, Hofman PA, Hof JR et al (2012) The diagnostic accuracy of non-echo-planar diffusion-weighted imaging in the detection of residual and/or recurrent cholesteatoma of the temporal bone. AJNR Am J Neuroradiol 33(3):439–444. https://doi.org/10.3174/ajnr.A2824 (Epub 22 Dec 2011)

    Article  CAS  PubMed  Google Scholar 

  12. Bammer R (2003) Basic principles of diffusion-weighted imaging. Eur J Radiol 45:169–184 (PMID: 12595101)

    Article  PubMed  Google Scholar 

  13. Chen S, Ikawa F, Kurisu K et al (2001) Quantitative MR evaluation of intracranial epidermoid tumors by fast fluid-attenuated inversion recovery imaging and echo-planar diffusion-weighted imaging. AJNR Am J Neuroradiol 22:1089–1096 (PMID: 11415903)

    CAS  PubMed  Google Scholar 

  14. Aikele P, Kittner T, Offergeld C et al (2003) Diffusion-weighted MR imaging of cholesteatoma in pediatric and adult patients who have undergone middle ear surgery. AJR Am J Roentgenol 181(1):261–265

    Article  CAS  PubMed  Google Scholar 

  15. Karçaaltincaba M, Aktas A (2011) Dual-energy CT revisited with multidetector CT: review of principles and clinical applications. Diagn Interv Radiol 17:181–194

    PubMed  Google Scholar 

  16. Johnson TR, Krauss B, Sedlmair M et al (2007) Material differentiation by dual energy CT: initial experience. Eur Radiol 17:1510–1517

    Article  PubMed  Google Scholar 

  17. Flohr TG, McCollough CH, Bruder H et al (2006) First performance evaluation of a dual-source CT system. Eur Radiol 16:256–268

    Article  PubMed  Google Scholar 

  18. Karaca L, Yuceler Z, Kantarci M et al (2016) The feasibility of dual-energy CT in differentiation of vertebral compression fractures. Br J Radiol 89:20150300

    Article  PubMed  Google Scholar 

  19. Palmer WE, Simeone FJ (2018) Can dual-energy CT challenge MR imaging in the diagnosis of focal infiltrative bone marrow lesions? Radiology 286(1):214–216. https://doi.org/10.1148/radiol.2017172325

    Article  PubMed  Google Scholar 

  20. Petritsch B, Kosmala A, Weng AM et al (2017) Vertebral compression fractures: third-generation dual-energy CT for detection of bone marrow edema at visual and quantitative analyses. Radiology 284(1):161–168. https://doi.org/10.1148/radiol.2017162165 (Epub 27 Feb 2017

    Article  PubMed  Google Scholar 

  21. Mallinson PI, Coupal TM, McLaughlin PD et al (2016) Dual-Energy CT for the Musculoskeletal system. Radiology 281(3):690–707 (Review)

    Article  PubMed  Google Scholar 

  22. Bodanapally UK, Shanmuganathan K, Issa G et al (2018) Dual-Energy CT in hemorrhagic progression of cerebral contusion: overestimation of hematoma volumes on standard 120-kV images and rectification with virtual high-energy monochromatic images after contrast-enhanced whole-body imaging. AJNR Am J Neuroradiol 39(4):658–662. https://doi.org/10.3174/ajnr.A5558 (Epub 8 Feb 2018

    Article  CAS  PubMed  Google Scholar 

  23. Bonatti M, Lombardo F, Zamboni GA et al (2018) Iodine extravasation quantification on dual-energy CT of the brain performed after mechanical thrombectomy for acute ischemic stroke can predict hemorrhagic complications. AJNR Am J Neuroradiol 1(2):3–4. https://doi.org/10.3174/ajnr.a5513 (Epub ahead of print)

    Article  Google Scholar 

  24. Magarelli N, De Santis V, Marziali G et al (2018) Application and advantages of monoenergetic reconstruction images for the reduction of metallic artifacts using dual-energy CT in knee and hip prostheses. Radiol Med 123(8):593–600. https://doi.org/10.1007/s11547-018-0881-8 (Epub 10 Apr 2018)

    Article  PubMed  Google Scholar 

  25. Hu R, Daftari Besheli L, Young J et al (2016) Dual-Energy head CT enables accurate distinction of intraparenchymal hemorrhage from calcification in emergency department patients. Radiology 280(1):177–183. https://doi.org/10.1148/radiol.2015150877 (Epub 25 Jan 2016)

    Article  PubMed  Google Scholar 

  26. Yung M, Tono T, Olszewska E et al (2017) EAONO/JOS Joint consensus statements on the definitions, classification and staging of middle ear cholesteatoma. J Int Adv Otol 13(1):1–8. https://doi.org/10.5152/iao.2017.3363

    Article  PubMed  Google Scholar 

  27. Rogha M, Hashemi SM, Mokhtarinejad F et al (2014) Comparison of preoperative temporal bone CT with intraoperative findings in patients with cholesteatoma. Iran J Otorhinolaryngol 26(74):7–12

    PubMed  PubMed Central  Google Scholar 

  28. Ayache D, Darrouzet V, Dubrulle F et al (2012) French society of otolaryngology head and neck surgery (SFORL). Imaging of non-operated cholesteatoma: clinical practice guidelines. Eur Ann Otorhinolaryngol Head Neck Dis 129(3):148–152. https://doi.org/10.1016/j.anorl.2011.09.005

    Article  CAS  PubMed  Google Scholar 

  29. Osman NM, Rahman AA, Ali MT (2017) The accuracy and sensitivity of diffusion-weighted magnetic resonance imaging with apparent diffusion coefficients in diagnosis of recurrent cholesteatoma. Eur J Radiol Open 23(4):27–39

    Article  Google Scholar 

Download references

Funding

We did not receive any funds for this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giovanni Foti.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standard of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standard.

Informed consent

This retrospective study received institutional review board and Informed consent was waived.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Foti, G., Beltramello, A., Minerva, G. et al. Identification of residual–recurrent cholesteatoma in operated ears: diagnostic accuracy of dual-energy CT and MRI. Radiol med 124, 478–486 (2019). https://doi.org/10.1007/s11547-019-00997-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11547-019-00997-y

Keywords

Navigation