Skip to main content
Log in

Delineating brachial plexus, cochlea, pharyngeal constrictor muscles and optic chiasm in head and neck radiotherapy: a CT-based model atlas

  • DIAGNOSTIC IMAGING IN ONCOLOGY
  • Published:
La radiologia medica Aims and scope Submit manuscript

Abstract

Background and purpose

Sparing of the organs at risk is one of the primary end-points of radiotherapy. The effects of organ-at-risk delineation on the dosimetric parameters can be critical and can influence treatment planning and outcomes. The aim of our study was to provide anatomical boundaries for the identification and delineation of the following critical organs at risk in the head and neck district: brachial plexus, cochlea, pharyngeal constrictor muscles and optic chiasm.

Patients and methods

One patient was initially selected to elaborate our atlas. This patient was subjected to a planning computed tomography of the brain and head and neck district; axial images of 3-mm thickness at 3-mm intervals were obtained. In the same set-up a magnetic resonance imaging study was also performed. The obtained images were fused based on anatomical landmarks and used by a radiation oncologist, supported by a neuroradiologist, to provide anatomo-radiological limits for the identification of the brachial plexus, cochlea, pharyngeal constrictor muscles and optic chiasm. These limits were further verified on three consecutive patients.

Results

A computed tomography-based atlas was developed with definition of cranial, caudal, medial, lateral, anterior and posterior limits for each organ considered.

Conclusions

This study allows improvement of definitions of anatomic boundaries for the brachial plexus, cochlea, pharyngeal constrictor muscles and optic chiasm. Our multidisciplinary experience led to the production of an institutional reference tool that could represent a useful aid for radiation oncologists in clinical practice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Shibuya K, Mathers CD, Boschi-Pinto C et al (2002) Global and regional estimates of cancer mortality and incidence by site: II. results for the global burden of disease 2000. BMC Cancer 26:2–37

    Google Scholar 

  2. Nuyts S (2007) Defining the target for radiotherapy of head and neck cancer. Cancer Imaging 7:S50–S55

    Article  PubMed Central  PubMed  Google Scholar 

  3. Truong MT, Nadgir RN, Hirsch AE et al (2010) Brachial plexus contouring with CT and MR imaging in radiation therapy planning for head and neck cancer. Radiographics 30:1095–1103

    Article  PubMed  Google Scholar 

  4. Hall WH, Guiou M, Lee NY et al (2008) Development and validation of a standardized method for contouring the brachial plexus: preliminary dosimetric analysis among patients treated with IMRT for head-and-neck cancer. Int J Radiat Oncol Biol Phys 72:1362–1367

    Article  PubMed  Google Scholar 

  5. Kong FM, Ritter T, Quint DJ et al (2011) Consideration of dose limits for organs at risk of thoracic radiotherapy: atlas for lung, proximal bronchial tree, esophagus, spinal cord, ribs, and brachial plexus. Int J Radiat Oncol Biol Phys 81:1442–1457

    Article  PubMed Central  PubMed  Google Scholar 

  6. Bhide SA, Gulliford S, Kazi R et al (2009) Correlation between dose to the pharyngeal constrictors and patient quality of life and late dysphagia following chemo-IMRT for head and neck cancer. Radiother Oncol 93:539–544

    Article  PubMed  Google Scholar 

  7. Christianen ME, Langendijk JA, Westerlaan HE et al (2011) Delineation of organs at risk involved in swallowing for radiotherapy treatment. Radiother Oncol 101:394–402

    Article  PubMed  Google Scholar 

  8. Todd M, Shah GV, Mukherji SK (2004) MR imaging of brachial plexus. Top Magn Reson Imaging 15:113–125

    Article  PubMed  Google Scholar 

  9. Netter FH, Hansen JT (2006) Atlas of human anatomy, 4th edn. WB Saunders, Philadelphia

    Google Scholar 

  10. Chapet O, Kong FM, Quint LE et al (2005) CT-based definition of thoracic lymph node stations: an atlas from the University of Michigan. Int J Radiat Oncol Biol Phys 63:170–178

    Article  PubMed  Google Scholar 

  11. Bland JM, Altman DG (1986) Statistical methods for assessing agreement between two methods of clinical measurement. Lancet 1:307–310

    Article  CAS  PubMed  Google Scholar 

  12. Bland JM, Altman DG (1995) Comparing methods of measurement: why plotting difference against standard method is misleading. Lancet 346:1085–1087

    Article  CAS  PubMed  Google Scholar 

  13. Ausili Cèfaro G, Genovesi D, Perez Carlos A (2013) Delineating organs at risk in radiation therapy, 1st edn. Springer, Milan

    Book  Google Scholar 

  14. Bhandare N, Jackson A, Eisbruch A et al (2010) Radiation therapy and hearing loss. Int J Radiat Oncol Biol Phys 76:S50–S57

    Article  PubMed Central  PubMed  Google Scholar 

  15. Mayo C, Martel MK, Marks LB et al (2010) Radiation dose-volume effects of optic nerves and chiasm. Int J Radiat Oncol Biol Phys 76:S28–S35

    Article  PubMed  Google Scholar 

  16. Celesia GG, DeMarco PJ (1994) Anatomy and physiology of the visual system. J Clin Neurophysiol 11:482–492

    Article  CAS  PubMed  Google Scholar 

  17. Yi SK, Hall WH, Mathai M et al (2012) Validating the RTOG-endorsed brachial plexus contouring atlas: an evaluation of reproducibility among patients treated by intensity-modulated radiotherapy for head-and-neck cancer. Int J Radiat Oncol Biol Phys 82:1060–1064

    Article  PubMed  Google Scholar 

  18. Nelms BE, Tomé WA, Robinson G, Wheeler J (2012) Variation in contouring of organs at risk: test case from a patient with oropharyngeal cancer. Int J Radiat Oncol Biol Phys 82:368–378

    Article  PubMed  Google Scholar 

  19. Chen WC, Jackson A, Budnick AS et al (2006) Sensorineural hearing loss in combined modality treatment of nasopharyngeal carcinoma. Cancer 106:820–829

    Article  PubMed  Google Scholar 

  20. Low WK, Toh ST, Wee J et al (2006) Sensorineural hearing loss after radiotherapy and chemoradiotherapy: a single, blinded, randomized study. J Clin Oncol 24:1904–1909

    Article  PubMed  Google Scholar 

  21. Pan CC, Eisbruch A, Lee JSPR et al (2005) Prospective study of inner ear radiation dose and hearing loss in head-and-neck cancer patients. Int J Radiat Oncol Biol Phys 61:1393–1402

    Article  PubMed  Google Scholar 

  22. Honoré HB, Bentzen SM, Møller K, Grau C (2002) Sensori-neural hearing loss after radiotherapy for nasopharyngeal carcinoma: individualized risk estimation. Radiother Oncol 65:9–16

    Article  PubMed  Google Scholar 

  23. Breunig J, Hernandez S, Lin J et al (2012) A system for continual quality improvement of normal tissue delineation for radiation therapy treatment planning. Int J Radiat Oncol Biol Phys 83:e703–e708

    Article  PubMed  Google Scholar 

  24. Deantonio L, Masini L, Brambilla M et al (2013) Dysphagia after definitive radiotherapy for head and neck cancer. Correlation of dose-volume parameters of the pharyngeal constrictor muscles. Strahlenther Onkol 189:230–236

    Article  CAS  PubMed  Google Scholar 

  25. Caglar HB, Tishler RB, Othus M et al (2008) Dose to larynx predicts for swallowing complications after intensity-modulated radiotherapy. Int J Radiat Oncol Biol Phys 72:1110–1118

    Article  PubMed  Google Scholar 

  26. Feng FY, Kim HM, Lyden TH et al (2007) Intensity-modulated radiotherapy of head and neck cancer aiming to reduce dysphagia: early dose-effect relationships for the swallowing structures. Int J Radiat Oncol Biol Phys 68:1289–1298

    Article  PubMed  Google Scholar 

  27. Jensen K, Lambertsen K, Grau C (2007) Late swallowing dysfunction and dysphagia after radiotherapy for pharynx cancer: frequency, intensity and correlation with dose and volume parameters. Radiother Oncol 85:74–82

    Article  PubMed  Google Scholar 

  28. Dirix P, Abbeel S, Vanstraelen B et al (2009) Dysphagia after chemoradiotherapy for head-and-neck squamous cell carcinoma: dose-effect relationships for the swallowing structures. Int J Radiat Oncol Biol Phys 75:385–392

    Article  CAS  PubMed  Google Scholar 

  29. Caudell JJ, Schaner PE, Desmond RA et al (2010) Dosimetric factors associated with long-term dysphagia after definitive radiotherapy for squamous cell carcinoma of the head and neck. Int J Radiat Oncol Biol Phys 76:403–409

    Article  PubMed  Google Scholar 

  30. Eisbruch A, Schwartz M, Rasch C et al (2004) Dysphagia and aspiration after chemoradiotherapy for head-and-neck cancer: which anatomic structures are affected and can they be spared by IMRT? Int J Radiat Oncol Biol Phys 60:1425–1439

    Article  PubMed  Google Scholar 

  31. Levendag PC, Teguh DN, Voet P et al (2007) Dysphagia disorders in patients with cancer of the oropharynx are significantly affected by the radiation therapy dose to the superior and middle constrictor muscle: a dose-effect relationship. Radiother Oncol 85:64–73

    Article  PubMed  Google Scholar 

  32. Nguyen NP, Sallah S, Karlsson U, Antoine JE (2002) Combined chemotherapy and radiation therapy for head and neck malignancies: quality of life issues. Cancer 94:1131–1141

    Article  PubMed  Google Scholar 

  33. Mittal BB, Pauloski BR, Haraf DJ et al (2003) Swallowing dysfunction—preventative and rehabilitation strategies in patients with head-and-neck cancers treated with surgery, radiotherapy, and chemotherapy: a critical review. Int J Radiat Oncol Biol Phys 57:1219–1230

    Article  PubMed  Google Scholar 

  34. Eisbruch A, Kim HM, Feng FY et al (2011) Chemo-IMRT of oropharyngeal cancer aiming to reduce dysphagia: swallowing organs late complication probabilities and dosimetric correlates. Int J Radiat Oncol Biol Phys 81:e93–e99

    Article  PubMed Central  PubMed  Google Scholar 

  35. Lessell S (2004) Friendly fire: neurogenic visual loss from radiation therapy. J Neuroophthalmol 24:243–250

    Article  PubMed  Google Scholar 

  36. Danesh-Meyer HV (2008) Radiation-induced optic neuropathy. J Clin Neurosci 15:95–100

    Article  PubMed  Google Scholar 

  37. Gordon KB, Char DH, Sagerman RH (1995) Late effects of radiation on the eye and ocular adnexa. Int J Radiat Oncol Biol Phys 31:1123–1139

    Article  CAS  PubMed  Google Scholar 

  38. Parsons JT, Bova FJ, Fitzgerald CR et al (1994) Radiation optic neuropathy after megavoltage external-beam irradiation: analysis of time-dose factors. Int J Radiat Oncol Biol Phys 30:755–763

    Article  CAS  PubMed  Google Scholar 

  39. Zhang T, Chi Y, Meldolesi E, Yan D (2007) Automatic delineation of on-line head-and-neck computed tomography images: toward on-line adaptive radiotherapy. Int J Radiat Oncol Biol Phys 68:522–530

    Article  PubMed  Google Scholar 

  40. Bondiau PY, Malandain G, Chanalet S (2005) Atlas-based automatic segmentation of MR images: validation study on the brainstem in radiotherapy context. Int J Radiat Oncol Biol Phys 61:289–298

    Article  PubMed  Google Scholar 

  41. Isambert A, Dhermain F, Bidault F et al (2008) Evaluation of an atlas-based automatic segmentation software for the delineation of brain organs at risk in a radiation therapy clinical context. Radiother Oncol 87:93–99

    Article  PubMed  Google Scholar 

Download references

Conflict of interest

The authors declare no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Domenico Genovesi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Genovesi, D., Perrotti, F., Trignani, M. et al. Delineating brachial plexus, cochlea, pharyngeal constrictor muscles and optic chiasm in head and neck radiotherapy: a CT-based model atlas. Radiol med 120, 352–360 (2015). https://doi.org/10.1007/s11547-014-0448-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11547-014-0448-2

Keywords

Navigation