Skip to main content
Log in

Small animal imaging facility: new perspectives for the radiologist

Servizio di imaging su piccoli animali: nuove prospettive per il radiologo

  • PET-CT PET-TC
  • Published:
La radiologia medica Aims and scope Submit manuscript

Abstract

In recent years, new technologies have become available for imaging small animals. The use of animal models in basic and preclinical sciences, for example, offers the possibility of testing diagnostic markers and drugs, which is becoming crucial in the success and timeliness of research and is allowing a more efficient approach in defining study objectives and providing many advantages for both clinical research and the pharmaceutical industry. The use of these instruments offers data that are more predictive of the distribution and efficacy of a compound. The mouse, in particular, has become a key animal model system for studying human disease. It offers the possibility of manipulating its genome and producing accurate models for many human disorders, thus resulting in significant progress in understanding pathologenic mechanisms. In neurobiology, the possibility of simulating neurodegenerative diseases has enabled the development and validation of new treatment strategies based on gene therapy or cell grafting. Noninvasive imaging in small living animal models has gained increasing importance in preclinical research, itself becoming an independent specialty. The aim of this article is to review the characteristics of these systems and illustrate their main applications.

Riassunto

Negli ultimi anni si sono rese disponibili nuove apparecchiature per lo studio di piccoli animali. L’utilizzo di modelli sperimentali nelle scienze di base e pre-cliniche consente di verificare test diagnostici e farmaci, divenendo essenziale per il successo e la tempestività della ricerca, offrendo un approccio più efficace nella definizione degli obiettivi da studiare e notevoli vantaggi sia per la ricerca clinica sia per le industrie farmaceutiche. L’utilizzo di tali tecnologie consente di ottenere informazioni più predittive riguardo alla distribuzione o all’efficacia di una molecola. Il topo, in particolare, è un modello animale insostituibile per lo studio delle malattie umane. Esso offre la possibilità di manipolare il suo genoma e di riprodurre accuratamente malattie umane, consentendo progressi significativi nella comprensione dei meccanismi patogenetici. In neurobiologia, la possibilità di ricreare malattie neurodegenerative ha permesso lo sviluppo e la convalida di nuove strategie terapeutiche basate sulla terapia genica o sul trapianto di cellule. L’imaging non invasivo su piccoli animali in vivo ha acquisito un ruolo sempre maggiore nella ricerca pre-clinica fino a divenire un settore autonomo. Scopo di questo contributo è presentare le caratteristiche di queste apparecchiature illustrandone le principali applicazioni.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References/Bibliografia

  1. Poltorak A, He X, Smirnova I et al (1998) Defective LPS signaling in C3H/HeJ and C57BL/10ScCr mice: mutations in Tlr4 gene. Science 282:2085–2088

    Article  PubMed  CAS  Google Scholar 

  2. Gu L, Tseng S, Horner RM et al (2000) Control of TH2 polarization by the chemokine monocyte chemoattractant protein-1. Nature 404:407–411

    Article  PubMed  CAS  Google Scholar 

  3. Hantraye P (1998) Modeling dopamine system dysfunction in experimental animals. Nucl Med Biol 25:721–728

    Article  PubMed  CAS  Google Scholar 

  4. Brouillet E, Condé F, Beal MF et al (1999) Replicating Huntington’s disease phenotype in experimental animals. Prog Neurobiol 59:427–468

    Article  PubMed  CAS  Google Scholar 

  5. Williams RW, Rakic P (1988) 3-Dimensional counting: an accurate and direct method to estimate numbers of cells in sectioned material. J Comp Neurol 278:344–352

    Article  PubMed  CAS  Google Scholar 

  6. Kanekal S, Sahai A, Jones RE et al (1995) Storage-phosphor autoradiography: a rapid and highly sensitive method for spatial imaging and quantitation of radioisotopes. J Pharmacol Toxicol Methods 33:171–178

    Article  PubMed  CAS  Google Scholar 

  7. Wu S, Ying G, Wu Q et al (2007) Toward simpler and faster genome-wide mutagenesis in mice. Nat Genet 39:922–930

    Article  PubMed  CAS  Google Scholar 

  8. Campbell RE, Tour O, Palmer AE et al (2002) A monomeric red fluorescent protein Proc Natl Acad Sci U S A 99:7877–7882

    Article  PubMed  CAS  Google Scholar 

  9. Contag CH, Bachmann MH (2002) Advances in in vivo bioluminescence imaging of gene expression Annu Rev Biomed Eng 4:235–260

    Article  PubMed  CAS  Google Scholar 

  10. Hastings JW (1996) Chemistries and colors of bioluminescent reactions: a review. Gene 173:5–11

    Article  PubMed  CAS  Google Scholar 

  11. Morgan NY, English S, Chen W et al (2005) Real-time in vivo non-invasive optical imaging using near-infrared fluorescent quantum dots. Acad Radiol 12:313–323

    Article  PubMed  Google Scholar 

  12. Gratton E, Breusegem S, Sutin J et al (2003) Fluorescence lifetime imaging for the two-photon microscopy: TD and frequency domain methods. J Biomed Opt 8:381–390

    Article  PubMed  Google Scholar 

  13. Montet X, Ntziachristos V, Grimm J et al (2005) Tomographic fluorescence mapping of tumor targets. Cancer Res 65:6330–6336

    Article  PubMed  CAS  Google Scholar 

  14. Kelly KA, Carson J, McCarthy JR et al (2007) Novel peptide sequence (“IQ-tag”) with high affinity for NIR fluorochromes allows protein and cell specific labeling for in vivo imaging. PLoS ONE 2:e665

    Article  PubMed  Google Scholar 

  15. Lipscomb IP, Hervé R, Harris K et al (2007) Amyloid-specific fluorophores for the rapid, sensitive in situ detection of prion contamination on surgical instruments. J Gen Virol 88:2619–2626

    Article  PubMed  CAS  Google Scholar 

  16. Medarova Z, Pham W, Kim Y et al (2006) In vivo imaging of tumor response to therapy using a dual-modality imaging strategy. Int J Cancer 118:2796–2802

    Article  PubMed  CAS  Google Scholar 

  17. Prout DL, Silverman RW, Chatziioannou A (2004) Detector concept for OPET—A combined PET and optical imaging system. IEEE Trans Nucl Sci 51:752–756

    Article  PubMed  Google Scholar 

  18. Benaron DA, Contag PR, Contag CH (1997) Imaging brain structure and function, infection and gene expression in the body using light. Philos Trans R Soc Lond B Biol Sci 352:755–761

    Article  PubMed  CAS  Google Scholar 

  19. Sadikot RT, Wudel LJ, Jansen DE et al (2002) Hepatic cryoablation-induced multisystem injury: bioluminescent detection of NF-kappaB activation in a transgenic mouse model. J Gstrointest Surg 6:264–270

    Article  Google Scholar 

  20. Ray P, De A, Min JJ et al (2004) Imaging tri-fusion multimodality reporter gene expression in living subjects. Cancer Res 64:1323–1330

    Article  PubMed  CAS  Google Scholar 

  21. Francis KP, Yu J, Bellinger-Kawahara C et al (2001) Visualizing pneumococcal infections in the lungs of live mice using bioluminescent Streptococcus pneumoniae transformed with a novel gram-positive lux transposon. Infect Immun 69:3350–3358

    Article  PubMed  CAS  Google Scholar 

  22. Edinger M, Cao YA, Hornig YS et al (2002) Advancing animal models of neoplasia through in vivo bioluminescence imaging. Eur J Cancer 38:2128–2136

    Article  PubMed  CAS  Google Scholar 

  23. Koransky ML, Ip TK, Wu S et al (2001) In vivo monitoring of myoblast transplantation into rat myocardium. J Heart Lung Transplant 20:188–189

    Article  PubMed  Google Scholar 

  24. Ritman EL (2002) Molecular imaging in small animals-roles for micro-CT. J Cell Biochem 39:116–124

    Article  Google Scholar 

  25. Goertzen AL, Meadors AK, Silverman RW et al (2002) Simultaneous molecular and anatomical imaging of the mouse in vivo. Phys Med Biol 47:4315–4328

    Article  PubMed  Google Scholar 

  26. Suckow C, Stout D (2008) MicroCT liver contrast agent enhancement over time, dose, and mouse strain. Mol Imaging Biol 10:114–120

    Article  PubMed  Google Scholar 

  27. Savai R, Wolf JC, Greschus S et al (2005) Analysis of tumor vessel supply in Lewis lung carcinoma in mice by fluorescent microsphere distribution and imaging with micro- and flat-panel computed tomography. Am J Pathol 167:937–946

    PubMed  Google Scholar 

  28. Marxen M, Thornton MM, Chiarot CB et al (2004) MicroCT scanner performance and considerations for vascular specimen imaging. Med Phys 31:305–313

    Article  PubMed  Google Scholar 

  29. Bhattacharjee D, Ito A (2001) Deceleration of carcinogenic potential by adaptation with low dose gamma irradiation. In Vivo 15:87–92

    PubMed  CAS  Google Scholar 

  30. Borah B, Gross GJ, Dufresne TE et al (2001) Three-dimensional microimaging (MRmicroI and microCT), finite element modelling and rapid prototyping provide unique insights into bone architecture in osteoporosis. Anat Rec 265:101–110

    Article  PubMed  CAS  Google Scholar 

  31. Rietbergen van B, Majumdar S, Pistoia W et al (1998) Assessment of cancellous bone mechanical properties from micro-FE models based on micro-CT, pQCT and MR images. Technol Health Care 6:413–420

    PubMed  Google Scholar 

  32. Ruegsegger P, Koller B, Muller R (1996) A microtomographic system for the non-destructive evaluation of bone architecture. Calcif Tissue Int 58:24–29

    Article  PubMed  CAS  Google Scholar 

  33. Kennel SJ, Davis IA, Branning J et al (2000) High resolution computed tomography and MRI for monitoring lung tumor growth in mice undergoing radioimmuntherapy: correlation with histology. Med Phys 27:1101–1107

    Article  PubMed  CAS  Google Scholar 

  34. Paulus MJ, Gleason SS, Sari-Sarraf H et al (2000) High-resolution X-ray CT screening of mutant mouse models. Proc SPIE 3921:270–279

    Article  Google Scholar 

  35. Larobina M, Brunetti A, Salvatore M (2006) Small animal PET: a review of commercially available imaging systems. Curr Med Imaging Rev 2:187–192

    Article  Google Scholar 

  36. Chatziioannou AF (2005) Instrumentation for molecular imaging in preclinical research: micro-PET and micro-SPECT. Proc Am Thorac Soc 2:533–536

    Article  PubMed  Google Scholar 

  37. Qi J, Leahy RM, Cherry SR et al (1998) High-resolution 3D bayesian image reconstruction using the microPET small-animal scanner. Phys Med Biol 43:1001–1013

    Article  PubMed  CAS  Google Scholar 

  38. Wang Y, Seidel J, Tsui BMW et al (2006) Performance Evaluation of the GE Healthcare eXplore VISTA Dual-Ring Small-Animal PET. J Nucl Med 47:1891–900

    PubMed  Google Scholar 

  39. Jones T (1996) The role of positron emission tomography within the spectrum of medical imaging. Eur J Nucl Med 23:2207–2211

    Google Scholar 

  40. Cherry SR, Gambhir SS (2001) Use of positron emission tomography in animal research. ILAR J 42:219–232

    PubMed  CAS  Google Scholar 

  41. Kornblum H, Araujo D, Annala A et al (2000) In vivo imaging of neuronal activation and plasticity in the rat brain by high resolution positron emission tomography (microPET). Nat Biotechnol 18:655–660

    Article  PubMed  CAS  Google Scholar 

  42. Wu AM, Yazaki P, Tsai S et al (2000) High-resolution microPET imaging of carcino-embryonic antigen-positive xenografts by using a copper-64-labeled engineered antibody fragment. Proc Natl Acad Sci U S A 97:8495–8500

    Article  PubMed  CAS  Google Scholar 

  43. Guilloteau D, Emond P, Baulieu JL et al (1998) Exploration of the dopamine transporter: In vitro and In vivo characterisation of a high-affinity and high-specificity iodinated tropane detivative (E)-N-(3-iodoprop-2-enyl)-2b-carbomethoxy-3b(4’-methylphenyl) nortropane (PE2I). Nucl Med Biol 25:331–337

    Article  PubMed  CAS  Google Scholar 

  44. Hume SP (1992) Quantification of carbon-11-labeled raclopride in rat striatum using PET. Synapse 12:47–54

    Article  PubMed  CAS  Google Scholar 

  45. Ogawa O, Umegaki H, Ishiwata K et al (2000) In vivo imaging of adenovirsu - mediated over expression of dopamine D2 receptors in rat striatum by positron emission tomography. Neuroreport 11:743–748

    Article  PubMed  CAS  Google Scholar 

  46. Mandl S, Schimmelpfennig C, Edinger M et al (2002) Understanding immune cell trafficking patterns via in vivo bioluminescence imaging. J Cell Biochem 39:239–248

    Article  Google Scholar 

  47. Beekman FJ, Van der Have F, Vastenhouw B et al (2005) U-SPECT-I: a novel system for submillimeter resolution tomography with radiolabeled molecules in mice. J Nucl Med 46:1194–1200

    PubMed  Google Scholar 

  48. Ochoa AV, Ploux L, Mastrippolito R et al (1997) An original emission tomograph for in vivo brain imaging of small animals. IEEE Trans Nucl Sci 44:1533–1537

    Article  Google Scholar 

  49. Liu Z, Kastis GA, Stevenson GD et al (2002) Quantitative analysis of acute myocardial infarct in rat hearts with ischemia-reperfusion using a high-resolution stationary SPECT system. J Nucl Med 43:933–939

    PubMed  Google Scholar 

  50. Sharma V, Luker GD, Piwnica-Worms D (2002) Molecular imaging of gene expression and protein function in vivo with PET and SPECT. J Magn Reson Imaging 16:336–351

    Article  PubMed  Google Scholar 

  51. Beck B, Plant DH, Grant SC et al (2002) Progress in high field MRI at the University of Florida. Magn Reson Mater Phys Biol Med 13:152–157

    Article  CAS  Google Scholar 

  52. Slates RB, Farahani K, Shao Y et al (1999) A study of artefacts in simultaneous PET and MR imaging using a prototype MR compatible PET scanner. Phys Med Biol 44:2015–2027

    Article  PubMed  CAS  Google Scholar 

  53. Faccioli N, Marzola P, Boschi F et al (2007) Pathological animal models in the experimental evaluation of tumour microvasculature with magnetic resonance imaging. Radiol Med 112:319–328

    Article  PubMed  CAS  Google Scholar 

  54. Menon RS, Kim SG (1999) Spatial and temporal limits in cognitive neuroimaging with fMRI. Trends Cogn Sci 3:207–216

    Article  PubMed  Google Scholar 

  55. Weissleder R, Moore A, Mahmood U et al (2000) In vivo magnetic resonance imaging of transgene expression. Nat Med 6:351–355

    Article  PubMed  CAS  Google Scholar 

  56. Lanza GM, Wickline SA (2001) Targeted ultrasonic contrast agents for molecular imaging and therapy. Prog Cardiovasc Dis 44:13–31

    Article  PubMed  CAS  Google Scholar 

  57. Dayton PA, Ferrara KW (2002) Targeted imaging using ultrasound. J Magn Reson Imaging 16:362–377

    Article  PubMed  Google Scholar 

  58. Rooks V, Beecken WD, Iordanescu I et al (2001) Sonographic evaluation of orthotopic bladder tumors in mice treated with TNP-470 an angiogenic inhibitor. Acad Radiol 8:121–127

    Article  PubMed  CAS  Google Scholar 

  59. Leong-Poi H, Christiansen J, Klibanov AL et al (2003) Noninvasive assessment of angiogenesis by ultrasound and microbubbles targeted to alpha(v)-integrins. Circulation 107:455–460

    Article  PubMed  CAS  Google Scholar 

  60. Turnbull DH (1999) In utero ultrasound backscatter microscopy of early stage mouse embryos. Comput Med Imaging Graph 23:25–31

    Article  PubMed  CAS  Google Scholar 

  61. Lukasik VM, Gillies RJ (2003) Animal anaesthesia for in vivo magnetic resonance. NMR Biomed 16:459–467

    Article  PubMed  CAS  Google Scholar 

  62. Fricke ST, Vink R, Chiodo C et al (2004) Consistent and reproducible slice selection in rodent brain using a novel stereotaxic device for MRI. J Neurosci Methods 136:99–102

    Article  PubMed  CAS  Google Scholar 

  63. Robb RA (2002) The virtualization of medicine: a decade of pitfalls and progress. Stud Health Technol Inform 85:1–7

    PubMed  Google Scholar 

  64. Turner R, Howseman A, Rees GE et al (1998) Functional magnetic resonance imaging of the human brain: data acquisition and analysis. Exp Brain Res 123:5–12

    Article  PubMed  CAS  Google Scholar 

  65. Huang SC, Wu HM, Shoghi-Jadid K et al (2004) Investigation of a new input function validation approach for dynamic mouse microPET studies. Mol Imaging Biol 6:34–46

    Article  PubMed  Google Scholar 

  66. Kircher MF, Mahmood U, King RS et al (2003) A multimodal nanoparticle for preoperative magnetic resonance imaging and intraoperative optical brain tumor delineation. Cancer Res 63:8122–8125

    PubMed  CAS  Google Scholar 

  67. Talanov VS, Regino CAS, Kobayashi H et al (2006) Dendrimer-based nanoprobe for dual modality magnetic resonance and fluorescence imaging. Nano Lett 6:1459–1463

    Article  PubMed  CAS  Google Scholar 

  68. Lewis JL, Achilefu S, Garbow JR et al (2002) Small animal imaging. current technology and perspectives for oncological imaging. Eur J Cancer 38:2173–2188

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Grassi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Grassi, R., Cavaliere, C., Cozzolino, S. et al. Small animal imaging facility: new perspectives for the radiologist. Radiol med 114, 152–167 (2009). https://doi.org/10.1007/s11547-008-0352-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11547-008-0352-8

Keywords

Parole chiave

Navigation